scholarly journals Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4746
Author(s):  
Marcela Sofia Pino ◽  
Michele Michelin ◽  
Rosa M. Rodríguez-Jasso ◽  
Alfredo Oliva-Taravilla ◽  
José A. Teixeira ◽  
...  

Agave bagasse is a residual biomass in the production of the alcoholic beverage tequila, and therefore, it is a promising raw material in the development of biorefineries using hot compressed water pretreatment (hydrothermal processing). Surfactants application has been frequently reported as an alternative to enhance monomeric sugars production efficiency and as a possibility to reduce the enzyme loading required. Nevertheless, the surfactant’s action mechanisms in the enzymatic hydrolysis is still not elucidated. In this work, hot compressed water pretreatment was applied on agave bagasse for biomass fractionation at 194 °C in isothermal regime for 30 min, and the effect of non-ionic surfactants (Tween 20, Tween 80, Span 80, and Polyethylene glycol (PEG 400)) was studied as a potential enhancer of enzymatic saccharification of hydrothermally pretreated solids of agave bagasse (AGB). It was found that non-ionic surfactants show an improvement in the conversion yield of cellulose to glucose (100%) and production of glucose (79.76 g/L) at 15 FPU/g glucan, the highest enhancement obtained being 7% regarding the control (no surfactant addition), using PEG 400 as an additive. The use of surfactants allows improving the production of fermentable sugars for the development of second-generation biorefineries.

BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Ran Sun ◽  
Xianliang Song ◽  
Runcang Sun ◽  
Jianxin Jiang

The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM).


2013 ◽  
Vol 144 ◽  
pp. 460-466 ◽  
Author(s):  
Dae Sung Kim ◽  
Aye Aye Myint ◽  
Hun Wook Lee ◽  
Junho Yoon ◽  
Youn-Woo Lee

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1640
Author(s):  
M.A. Martín-Lara ◽  
L. Chica-Redecillas ◽  
A. Pérez ◽  
G. Blázquez ◽  
G. Garcia-Garcia ◽  
...  

In this work, liquid hot water pretreatment (autohydrolysis) was used to improve enzymatic hydrolysis of a commonly consumed vegetable waste in Spain, Italian green pepper, to finally produce fermentable sugars. Firstly, the effect of temperature and contact time on sugar recovery during pretreatment (in insoluble solid and liquid fraction) was studied in detail. Then, enzymatic hydrolysis using commercial cellulase was performed with the insoluble solid resulting from pretreatment. The objective was to compare results with and without pretreatment. The results showed that the pretreatment step was effective to facilitate the sugars release in enzymatic hydrolysis, increasing the global sugar yield. This was especially notable when pretreatment was carried out at 180 °C for 40 min for glucose yields. In these conditions a global glucose yield of 61.02% was obtained. In addition, very low concentrations of phenolic compounds (ranging from 69.12 to 82.24 mg/L) were found in the liquid fraction from enzymatic hydrolysis, decreasing the possibility of fermentation inhibition produced by these components. Results showed that Italian green pepper is an interesting feedstock to obtain free sugars and prevent the enormous quantity of this food waste discarded annually.


2013 ◽  
Vol 275-277 ◽  
pp. 1662-1665 ◽  
Author(s):  
Qiang Li ◽  
Juan Juan Fei ◽  
Xu Ding Gu ◽  
Geng Sheng Ji ◽  
Yang Liu ◽  
...  

This study aims to establish a natural cellulosic biomass pretreatment process using ionic liquid (IL) for efficient enzymatic hydrolysis and second generation bioethanol. The IL 1-Butyl-3-methylimidazolium Chloride/FeCl3 ([Bmim]Cl/FeCl3) was selected in view of its low temperature pretreatment ability and the potential of accelerating enzymatic hydrolysis, and it could be recyclable. The yield of reducing sugars from sugarcane residue pretreated with this IL at 80 oC for 1 h reached 46.8% after being enzymatically hydrolyzed for 24 h. Sugarcane residue regenerated were hydrolyzed more easily than that treated with water. The fermentability of the hydrolyzates, obtained after enzymatic saccharification of the regenerated sugarcane residue, was transformed into bioethanol using Candida shehatae. This microbe could absorb glucose and xylose efficiently, and the ethanol production was 0.38 g/g glucose within 30 h fermentation. In conclusion, the metal ionic liquid pretreatment in low temperature shows promise as pretreatment solvent for natural biomass.


2018 ◽  
Vol 33 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Dan Huo ◽  
Qiulin Yang ◽  
Guigan Fang ◽  
Qiujuan Liu ◽  
Chuanling Si ◽  
...  

Abstract Eucalyptus residues from pulp mill were pretreated with aqueous ammonia soaking (AAS) method to improve the efficiency of enzymatic hydrolysis. The optimized condition of AAS was obtained by response surface methodology. Meanwhile, hydrogen peroxide was introduced into the AAS system to modify the AAS pretreatment (AASP). The results showed that a fermentable sugar yield of 64.96 % was obtained when the eucalypt fibers were pretreated at the optimal conditions, with 80 % of ammonia (w/w) for 11 h and keeping the temperature at 90 °C. In further research it was found that the addition of H2O2 to the AAS could improve the pretreatment efficiency. The delignification rate and enzymatic digestibility were increased to 64.49 % and 73.85 %, respectively, with 5 % of hydrogen peroxide being used. FTIR analysis indicated that most syringyl and guaiacyl lignin and a trace amount of xylan were degraded and dissolved during the AAS and AASP pretreatments. The CrI of the raw material was increased after AAS and AASP pretreatments, which was attributed to the removal of amorphous portion. SEM images showed that microfibers were separated and explored from the initial fiber structure after AAS pretreatment, and the AASP method could improve the destructiveness of the fiber surface.


Holzforschung ◽  
2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Fokko Schütt ◽  
Jürgen Puls ◽  
Bodo Saake

Abstract Steam refining was investigated as a pretreatment for enzymatic hydrolysis of poplar wood from a short rotation plantation. The experiments were carried out without debarking to use an economically realistic raw material. Steam refining conditions were varied in the range of 3–30 min and 170–220°C, according to a factorial design created with the software JMP from SAS Institute Inc., Cary, NC, USA. Predicted steaming conditions for highest glucose and xylose yields after enzymatic hydrolysis were at 210°C and 15 min. Control tests under the optimized conditions verified the predicted results. Further pretreatments without bark showed that the enzymes were not significantly inhibited by the bark. The yield of glucose and xylose was 61.9% of theoretical for the experiments with the whole raw material, whereas the yield for the experiments without bark was 63.6%. Alkaline extraction of lignin from the fibers before enzymatic hydrolysis resulted in an increase of glucose yields from mild pretreated fibers and a decrease for severe pretreated fibers. The extracted lignin had a high content of xylose of up to 14% after very mild pretreatments. On the other hand, molecular weights of the extracted lignin increased substantially after pretreatments with a severity factor above 4. Hence, alkaline extraction of the lignin seems only attractive in a narrow range of steaming conditions.


Sign in / Sign up

Export Citation Format

Share Document