scholarly journals Solar-Based DG Allocation Using Harris Hawks Optimization While Considering Practical Aspects

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5206
Author(s):  
Suprava Chakraborty ◽  
Sumit Verma ◽  
Aprajita Salgotra ◽  
Rajvikram Madurai Elavarasan ◽  
Devaraj Elangovan ◽  
...  

The restructuring of power systems and the ever-increasing demand for electricity have given rise to congestion in power networks. The use of distributed generators (DGs) may play a significant role in tackling such issues. DGs may be integrated with electrical power networks to regulate the drift of power in the transmission lines, thereby increasing the power transfer capabilities of lines and improving the overall performance of electrical networks. In this article, an effective method based on the Harris hawks optimization (HHO) algorithm is used to select the optimum capacity, number, and site of solar-based DGs to reduce real power losses and voltage deviation. The proposed HHO has been tested with a complex benchmark function then applied to the IEEE 33 and IEEE 69 bus radial distribution systems. The single and multiple solar-based DGs are optimized for the optimum size and site with a unity power factor. It is observed that the overall performance of the systems is enhanced when additional DGs are installed. Moreover, considering the stochastic and sporadic nature of solar irradiance, the practical size of DG has been suggested based on analysis that may be adopted while designing the actual photovoltaic (PV) plant for usage. The obtained simulation outcomes are compared with the latest state-of-the-art literature and suggest that the proposed HHO is capable of processing complex high dimensional benchmark functions and has capability to handle problems pertaining to electrical distribution in an effective manner.

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 296 ◽  
Author(s):  
Jakub Furgał

The analysis of lightning overvoltages generated in electrical power systems has a great meaning for the designers and exploitation engineers because it creates bases for the optimization of construction overhead transmission lines and high voltage substations, reducing costs and increasing reliability of the transmission and distribution of electrical energy. Lightning overvoltages generated in electrical power systems with overhead transmission lines are a result of complex, nonlinear, and surge phenomena occurring in the structure of line towers and electrical substation when the lightning current is flowing through them. Methods of overvoltage stress analysis are intensely developed, and one of the directions is working out models of high voltage electrical devices and phenomena in electrical networks, which influence the shape and values of overvoltage risks. The model of lightning current has a significant influence on the courses of overvoltages in high voltage transmission systems. The paper is focused on the analysis of the influence of the model of lightning current making use of simulations of the shape, and maximal values of overvoltages generated in high voltage transmission systems during a direct lightning strike to the overhead lines. Two models of lightning current used in simulations with the Electromagnetic Transients Program/Alternative Transient Program (EMTP/ATP) were analyzed, i.e., the Heidler model and CIGRE (Conseil International des Grands Réseaux Électriques) model. The EMTP/ATP computer program is very often used in simulations of overvoltages in electrical networks. Unfortunately, the users get no information on the criterion to be used when selecting the model of lightning current used in the simulations. The analysis presented in the paper gives practical knowledge about the effect of the use of a particular kind of lightning current model on the results of simulations of lightning overvoltage propagation in electrical networks, overvoltage protection, as well as on theoretical and practical aspects of the insulation coordination in high voltage transmission systems.


2019 ◽  
Vol 70 (6) ◽  
pp. 494-498
Author(s):  
Ömer Akgün ◽  
Tahir Çetin Akıncı ◽  
Gökhan Erdemir ◽  
Serhat Şeker

Abstract Ferroresonance is a nonlinear phenomenon that damages the undesired, destructive system for energy transmission lines. The formation and development of this overvoltage ferroresonance phenomenon is an important research topic as a mysterious event in energy power systems. In this study, Seyit Omer-Iklar energy transmission line from Turkey’s electrical transmission networks was modelled using real parameters. Ferroresonance scenario was created on the model. The energy transmission system with the scenario is set to a simulation time of 4 seconds. The first two seconds are set to normal. By cutting off the transmission line in the 2nd sec., the system is provided with ferroresonance drift. According to the data obtained therefrom, spectrograms, instantaneous amplitude, instantaneous frequency and instantaneous phase were conducted. The analyses have made clear that the instantaneous frequency amplitude defined the system’s ferroresonance moment very well.


Author(s):  
Farhad Namdari ◽  
Fatemeh Soleimani ◽  
Esmaeel Rokrok

<p><em>Environmental concerns along with the increasing demand on electrical power, have led to power generation of renewable sources like wind. Connecting wind turbines in large scale powers with transmission network makes new challenges like the impact of these renewable sources on power system protection. This paper studies the impact of fault resistance and its location on voltage and current fundamental frequencies of faulted lines connected to DFIG based wind farms and it will be demonstrated that because of the large differences between these frequencies, impedance measuring of distance relays is inefficient. Hence in these power systems using conventional impedance measurements is not suitable anymore and new impedance measuring approaches are required in distance relays.</em></p>


Author(s):  
Okan Ozgonenel ◽  
◽  
Kubra Nur Akpinar ◽  

Electrical power systems are expected to transmit continuously nominal rated sinusoidal voltage and current to consumers. However, the widespread use of power electronics has brought power quality problems. This study performs classification of power quality disturbances using an artificial neural network (ANN). The most appropriate ANN structure was determined using the Box-Behnken experimental design method. Nine types of disturbance (no fault, voltage sag, voltage, swell, flicker, harmonics, transient, DC component, electromagnetic interference, instant interruption) were investigated in computer simulations. The feature vectors used in the identification of the different types of disturbances were produced using the discrete wavelet transform and principal component analysis. Our results show that the optimized feed forward multilayer ANN structure successfully distinguishes power quality disturbances in simulation data and was also able to identify these disturbances in real time data from substations.


2010 ◽  
pp. 10-12
Author(s):  
Anne Blavette

In less than a century, electricity has become the cornerstone of our modern society. Thanks to it, living conditions have changed more dramatically in 50 years than in two centuries. However, whereas electricity has provided well-being to billions of people over these past few decades, its ever-growing consumption is more and more threatening us. Climate change, fossil fuel depletion, and security of energy supply are crucial issues to be addressed for our “energy society” to be sustainable. Renewables are considered as a major part of the solution. This article deals with the issues related to integrating wave energy into electrical power systems. The major problem associated with wave energy is its variability. Variability can be observed at several time scales: from the range of seconds (wave-to-wave), to minutes (sea-state to sea-state), to days or months (seasonal variations). However, if wave energy is to be used for generating electricity, electrical networks ...


Author(s):  
Fredy Estuardo Tamayo Guzmán ◽  
Carlos Andrés Barrera-Singaña

Electrical power systems are exposed to several events that can cause unstable operation scenarios. This is due to improper operation of certain components. If an event occurs, the system must be designed to overcome that contingency, thus remaining in a permanent condition that must be evaluated in order to monitor and prevent a possible collapse of the system. An evaluation of steady state stability is proposed at this work based on the capacity curves of generators, transformers and transmission lines. These remarked curves provide information on the operation point of these elements, thus allowing the application of remedial actions. PowerFactory and Matlab are used to carry out the tool for monitoring the operation points after a contingency. The effectiveness of the developed tool is validated at the IEEE 39-bus power system model, where results shows that the functionalaty for different contingencies based on the operating conditions when the components of the power system are varied, cosnquently, the tool identifies cases that require actions at the operational level.


Author(s):  
Stefka Nedelcheva ◽  
Mihaela Ivanova ◽  
Mehmed Hassan

The energy efficiency improvement actions of the electrical networks are divided into two main groups: operational and technical. Technical events require significant investment. Operating events do not require investment and are limited to optimal solutions in operational conditions that achieve energy efficiency. The report presents a methodology for assessing of the energy efficiency when changing the configuration of distribution electrical power networks. It is summarizing the results of the reconstruction and exploitation of the distribution networks for medium and low voltage under optimized schemes, which achieve energy efficiency. Recommendations are made for the implementation of energy efficiency activities in the exploitation of distribution networks.


2019 ◽  
Vol 8 (3) ◽  
pp. 7366-7369

Power quality has been an issue in electrical power systems. Disturbances occur in power quality which effects machines, some electric devices and severe cause will get very serious damages. For normal and efficient operation it’s necessary to compensate and acknowledge every type of the disturbances at earlier time of the power system. Many sorts of Custom Power Devices (CPD’s) are used to resolve these issues .Here at present, one in every of those devices, Dynamic Voltage restorer (DVR) is conferred. In power distribution systems this is often best and effective device employed. During this project new structure and control methodology of multifunctional DVRs for voltage quality correction are mentioned. Proportional Integral Controller and Fuzzy Logic Controller are used for the PQ improvement. The performance of the device and Total Harmonic Distortion is compared with each other. The performance of the device like voltage swell, sag is projected.


2021 ◽  
Vol 24 (1) ◽  
pp. 69-72
Author(s):  
SKRYPNYK S. ◽  

In the current global economic crisis and acute shortage of energy resources, increasing importance is attached to energy saving measures, economical and careful consumption of raw materials, materials, electricity and heat, environmental safety of industrial production. During the reconstruction of existing power supply systems of industrial enterprises, modern progressive solutions should be considered and implemented, morally and physically obsolete electrical equipment should be replaced, namely the introduction of new electrical equipment for transition from 6/10 kV to 20 kV in Ukrainian power systems. It is also necessary to pay attention to the improvement of power supply circuits and distribution networks, the implementation of complex automation of complex technological processes, rational compensation of reactive power at all levels of power supply systems. In the power system, the main transport link is the power line. Power lines (transmission lines) are long conductors suspended at a safe distance from the ground overhead lines (overhead lines) or cable lines (overhead lines) in which conductors are insulated from each other and from the environment and protected by insulation and armor electricity. Power lines are the most massive elements of the power supply system, they connect the individual nodes of its circuit. Longitudinal and transverse parameters are distinguished in alternative schemes. The load current flows through the longitudinal parameters, voltage is applied to the transverse ones. The replacement circuit of the electrical network consists of replacement circuits of the following elements: power lines, transformers, reactors, capacitors, loads, power sources. Calculating the steady-state modes of power systems, the substitution schemes of the elements are given in a single-line design, because the parameters of all phases are symmetrical. In local and local electrical networks with a relatively short length and low rated voltage, the conduction currents are small compared to load currents. Therefore, in typical electrical calculations of these networks, the capacitive conductivity of the lines is not taken into account. However, for these networks, the accounting of capacitive conductivities is necessary when considering some modes, the existence of which in itself is due only to the presence of capacitive conductivities. For example, the mode of single-phase ground fault in a network with isolated or compensated neutral or analysis of the modes of operation of neutrals of electrical networks of different voltage classes cannot be performed without taking into account the capacitive conductivity of these networks. When switching the power system of Ukraine to the nominal voltage of 20 kV, it should be taken into account that the transmission line will be replaced in the sections of both the overhead power line and cable power line, namely 35, 10, 6 kV. The replacement scheme must describe all the characteristics and properties of the elements of cable and overhead lines in accordance with real conditions. Thus, it is not expedient to use simplified substitution circuits that neglect energy parameters and properties of conductors to study the parameters of transmission lines. The use of a complete "P" -shaped scheme for the analysis of the parameters of transmission lines and transmission lines for a voltage of 20 kV is the basis of mathematical modeling of the transmission system in the distribution networks of our country.


2020 ◽  
Author(s):  
Maise N. S. da Silva ◽  
Rafael S. Salles ◽  
Alexandre Degan ◽  
Carlos A. Duque ◽  
Paulo F. Ribeiro

Harmonic distortions are not new problems in electrical power systems. However, electrical networks have undergone several changes in recent decades, such as the wide range of electronic devices (converters, control devices, etc.), and those equipment produce emission of harmonic currents. The investigation of the contribution of several sources of harmonics in power systems is essential, considering that it is a problem of power quality that cannot be neglected. Thispaper aims to investigate the aggregation of harmonic currents in a 230kV TBE/Eletronorte system. For this, the transmission system was modeled using MATLAB/Simulink software with the typical values provided by TBE. A vectorial analysis was performed for the three-phase system and a sum analyzes of harmonics from different sources on Phase A, to estimate the influence of those current sources on Castanhal and Guama buses, when a harmonic spectrumis present on Vila do Conde and Utinga buses. In both analyzes, a phase angle spectrum of 10 and 20 degrees was applied in the harmonic source of Utinga. The summation analyzes proved to be useful because it can estimate values that harmonic currents can assume, for different conditions, and can be very useful in the planning stage to avoid estimation errors.


Sign in / Sign up

Export Citation Format

Share Document