scholarly journals Efficient and Stable Perovskite Large Area Cells by Low-Cost Fluorene-Xantene-Based Hole Transporting Layer

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6081
Author(s):  
Luigi Vesce ◽  
Maurizio Stefanelli ◽  
Aldo Di Carlo

Among the new generation photovoltaics, perovskite solar cell (PSC) technology reached top efficiencies in a few years. Currently, the main objective to further develop PSCs is related to the fabrication of stable devices with cost-effective materials and reliable fabrication processes to achieve a possible industrialization pathway. In the n-i-p device configuration, the hole transporting material (HTM) used most is the highly doped organic spiro-fluorene-based material (Spiro-OMeTAD). In addition to the high cost related to its complex synthesis, this material has different issues such as poor photo, thermal and moisture stability. Here, we test on small and large area PSCs a commercially available HTM (X55, Dyenamo) with a new core made by low-cost fluorene–xantene units. The one-pot synthesis of this compound reduces 30 times its cost with respect to Spiro-OMeTAD. The optoelectronic performances and properties are characterized through JV measurement, IPCE (incident photon to current efficiency), steady-state photoluminescence and ISOS stability test. SEM (scanning electron microscope) images reveal a uniform and pinhole free coverage of the X55 HTM surface, which reduces the charge recombination losses and improves the device performance relative to Spiro-OMeTAD from 16% to 17%. The ISOS-D-1 stability test on large area cells without any encapsulation reports an efficiency drop of about 15% after 1000 h compared to 30% for the reference case.

2020 ◽  
Vol 17 (2) ◽  
pp. 131-135
Author(s):  
Zohreh Shahnavaz ◽  
Lia Zaharani ◽  
Mohd Rafie Johan ◽  
Nader Ghaffari Khaligh

Background: In continuation of our previous work and the applications of saccharin, we encouraged to investigate the one-pot synthesis of the aryl iodides by the diazotization of the arene diazonium saccharin salts. Objective: Arene diazonium salts play an important role in organic synthesis as intermediate and a wide variety of aromatic compounds have been prepared using them. A serious drawback of arene diazonium salts is their instability in a dry state; therefore, they must be stored and handled carefully to avoid spontaneous explosion and other hazard events. Methods: The arene diazonium saccharin salts were prepared as active intermediates in situ through the reaction of various aryl amines with tert-butyl nitrite (TBN) in the presence of saccharin (Sac–H). Then, in situ obtained intermediates were used into the diazotization step without separation and purification in the current protocol. Results: A variety of aryl iodides were synthesized at a greener and low-cost method in the presence of TBN, Sac–H, glacial acetic acid, and TEAI. Conclusion: In summary, a telescopic reaction is developed for the synthesis of aryl iodides. The current methodology is safe, cost-effective, broad substrate scope, and metal-free. All used reagents are commercially available and inert to moisture and air. Also, the saccharine and tetraethylammonium cation could be partially recovered from the reaction residue, which reduces waste generation, energy consumption, raw material, and waste disposal costs.


2018 ◽  
Vol 6 (41) ◽  
pp. 20327-20337 ◽  
Author(s):  
Seckin Akin ◽  
Yuhang Liu ◽  
M. Ibrahim Dar ◽  
Shaik M. Zakeeruddin ◽  
Michael Grätzel ◽  
...  

Besides hysteresis-free promising efficiency (16.7%), cost effective CCO-based devices exhibited remarkable shelf-stability for 60 days and operational stability upon 500 hours.


2021 ◽  
Author(s):  
Xueqiao Li ◽  
Na Sun ◽  
Zhanfeng Li ◽  
Jinbo Chen ◽  
Qinjun Sun ◽  
...  

Perovskite solar cells (PSCs) have reached their highest efficiency with the state-of-the-art hole-transporting material (HTM) spiro-OMeTAD.


2017 ◽  
Vol 5 (40) ◽  
pp. 21161-21168 ◽  
Author(s):  
Yongguang Tu ◽  
Jihuai Wu ◽  
Xin He ◽  
Panfeng Guo ◽  
Tongyue Wu ◽  
...  

Further efficiency enhancement mainly relies on decreasing the interface losses between the active layers in perovskite solar cells.


2021 ◽  
Vol 18 ◽  
Author(s):  
Abolfazl Olyaei ◽  
Zahra Ghahremany ◽  
Madieh Sadeghpour

: A green and efficient protocol was developed for the one-pot three-component synthesis of novel 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-(arylamino)-1H-indene-1,3(2H)-dione derivatives by the reaction of 4-hydroxycoumarin, ninhydrin and aromatic amines in the presence of guanidine hydrochloride as an organocatalyst under solvent-free conditions. The present approach offers several advantages such as low cost, simple work-up, short reaction times, chromatography-free purification, high yields and greener conditions.


2021 ◽  
Vol 119 (13) ◽  
pp. 133904
Author(s):  
Binbin Wang ◽  
Lingwei Xue ◽  
Shiqi Wang ◽  
Yao Li ◽  
Lele Zang ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (66) ◽  
pp. 41903-41908 ◽  
Author(s):  
Zhanfeng Li ◽  
Jinbo Chen ◽  
Hui Li ◽  
Qi Zhang ◽  
Zhiliang Chen ◽  
...  

A low-cost spiro[3.3]heptane-2,6-dispirofluorene-based HTM termed SDF-OMeTAD has been designed and synthesized via a two-step reaction, representing a considerable simplification with respect to that of the well-known spiro-OMeTAD.


Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Irina V. Litovko ◽  
Alexy A. Goncharov ◽  
Andrew N. Dobrovolskiy ◽  
Lily V. Naiko ◽  
Irina V. Naiko

Abstract The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1635
Author(s):  
Sumayya M. Abdulrahim ◽  
Zubair Ahmad ◽  
Jolly Bahadra ◽  
Noora J. Al-Thani

The future photovoltaic technologies based on perovskite materials are aimed to build low tech, truly economical, easily fabricated, broadly deployable, and trustworthy solar cells. Hole transport material (HTM) free perovskite solar cells (PSCs) are among the most likely architectures which hold a distinctive design and provide a simple way to produce large-area and cost-effective manufacture of PSCs. Notably, in the monolithic scheme of the HTM-free PSCs, all layers can be printed using highly reproducible and morphology-controlled methods, and this design has successfully been demonstrated for industrial-scale fabrication. In this review article, we comprehensively describe the recent advancements in the different types of mesoporous (nanostructured) and planar HTM-free PSCs. In addition, the effect of various nanostructures and mesoporous layers on their performance is discussed using the electrochemical impedance spectroscopy (EIS) technique. We bring together the different perspectives that researchers have developed to interpret and analyze the EIS data of the HTM-free PSCs. Their analysis using the EIS tool, the limitations of these studies, and the future work directions to overcome these limitations to enhance the performance of HTM-free PSCs are comprehensively considered.


2014 ◽  
Vol 27 ◽  
pp. 1460142
Author(s):  
HUIRONG QI ◽  
MEI LIU

In the last few years, wire chambers have been frequently used for X-ray detection because of their low cost, large area and reliability. X-ray diffraction is an irreplaceable method for powder crystal lattice measurements. A one-dimensional single-wire chamber has been developed in our lab to provide high position resolution for powder diffraction experiments using synchrotron radiation. There are 200 readout strips of 0.5 mm width with a pitch of 1.0 mm in the X direction, and the working gas is a mixture of Ar and CO2 (90/10). The one-dimensional position of the original ionization point is determined by the adjacent strip's distribution information using the center of gravity method. Recently, a study of the detector's performance and diffraction image was completed at the 1W1B laboratory of the Beijing Synchrotron Radiation Facility (BSRF) using a sample of SiO2. Most of the relative errors between the measured values of diffraction angles and existing data were less than 1%. The best position resolution achieved for the detector in the test was 71 μm (σ value) with a 20 μm slit collimator. Finally, by changing the detector height in incremental distances from the center of the sample, the one-dimensional detector achieved a two-dimensional diffraction imaging function, and the results are in good agreement with standard data.


Sign in / Sign up

Export Citation Format

Share Document