scholarly journals Intelligent Detection of Small Faults Using a Support Vector Machine

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6242
Author(s):  
Aiping Zeng ◽  
Lei Yan ◽  
Yaping Huang ◽  
Enming Ren ◽  
Tao Liu ◽  
...  

The small fault with a vertical displacement (or drop) of 2–5 m has now become an important factor affecting the production efficiency and safety of coal mines. When the 3D seismic data contain noise, it is easy to cause large errors in the prediction results of small faults. This paper proposes an intelligent small fault identification method combining variable mode decomposition (VMD) and a support vector machine (SVM). A fault forward model is established to analyze the response characteristics of different seismic attributes under the condition of random noise. The results show that VMD can effectively realize the attenuation of random noise and the seismic attributes extracted on this basis have a good correlation with the small fault. Through the analysis of the SVM algorithm and the fault forward model, it is proved that it is feasible to realize intelligent predictions of small faults by using seismic attributes as the input of a SVM. The fault prediction method using a SVM that is proposed in this paper has higher accuracy than the principal component analysis method, as the prediction results have important guiding significance and reference value for later coal mining. Therefore, the method presented in this paper can be used as a new intelligent method for small fault identification in coal fields.

2021 ◽  
Vol 47 (3) ◽  
pp. 1138-1153
Author(s):  
Hadija Mbembati ◽  
Kwame Ibwe ◽  
Baraka Maiseli

Distribution networks remain the most maintenance-intensive parts of power systems. The implementation of maintenance automation and prediction of equipment fault can enhance system reliability while reducing the overall costs. In Tanzania, however, maintenance automation has not been deployed in secondary distribution networks (SDNs). Instead, traditional methods are used for condition prediction and fault identification of power assets (transformers and power lines). These (manual) methods are costly and time-consuming, and may introduce human-related errors. Motivated by these challenges, this work introduces maintenance automation into the network architecture by implementing effective maintenance and fault identification methods. The proposed method adopts machine learning techniques to develop a novel system architecture for maintenance automation in the SDN. Experimental results showed that different transformer prediction methods, namely support vector machine, kernel support vector machine, and multi-layer artificial neural network, give performance values of  96.72%, 97.50%, and 97.53%, respectively. Furthermore, oil based performance analysis was done to compare the existing methods with the proposed method. Simulation results showed that the proposed method can accurately identify up to ten transformer abnormalities. These results suggest that the proposed system may be integrated into a maintenance scheduling platform to reduce unplanned maintenance outages and human maintenance-related errors. Keywords: Predictive maintenance; fault identification; fault prediction; maintenance automation; secondary electrical distribution network


2021 ◽  
Author(s):  
Tim Brandes ◽  
Stefano Scarso ◽  
Christian Koch ◽  
Stephan Staudacher

Abstract A numerical experiment of intentionally reduced complexity is used to demonstrate a method to classify flight missions in terms of the operational severity experienced by the engines. In this proof of concept, the general term of severity is limited to the erosion of the core flow compressor blade and vane leading edges. A Monte Carlo simulation of varying operational conditions generates a required database of 10000 flight missions. Each flight is sampled at a rate of 1 Hz. Eleven measurable or synthesizable physical parameters are deemed to be relevant for the problem. They are reduced to seven universal non-dimensional groups which are averaged for each flight. The application of principal component analysis allows a further reduction to three principal components. They are used to run a support-vector machine model in order to classify the flights. A linear kernel function is chosen for the support-vector machine due to its low computation time compared to other functions. The robustness of the classification approach against measurement precision error is evaluated. In addition, a minimum number of flights required for training and a sensible number of severity classes are documented. Furthermore, the importance to train the algorithms on a sufficiently wide range of operations is presented.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8017
Author(s):  
Nurfazrina M. Zamry ◽  
Anazida Zainal ◽  
Murad A. Rassam ◽  
Eman H. Alkhammash ◽  
Fuad A. Ghaleb ◽  
...  

Wireless Sensors Networks have been the focus of significant attention from research and development due to their applications of collecting data from various fields such as smart cities, power grids, transportation systems, medical sectors, military, and rural areas. Accurate and reliable measurements for insightful data analysis and decision-making are the ultimate goals of sensor networks for critical domains. However, the raw data collected by WSNs usually are not reliable and inaccurate due to the imperfect nature of WSNs. Identifying misbehaviours or anomalies in the network is important for providing reliable and secure functioning of the network. However, due to resource constraints, a lightweight detection scheme is a major design challenge in sensor networks. This paper aims at designing and developing a lightweight anomaly detection scheme to improve efficiency in terms of reducing the computational complexity and communication and improving memory utilization overhead while maintaining high accuracy. To achieve this aim, one-class learning and dimension reduction concepts were used in the design. The One-Class Support Vector Machine (OCSVM) with hyper-ellipsoid variance was used for anomaly detection due to its advantage in classifying unlabelled and multivariate data. Various One-Class Support Vector Machine formulations have been investigated and Centred-Ellipsoid has been adopted in this study due to its effectiveness. Centred-Ellipsoid is the most effective kernel among studies formulations. To decrease the computational complexity and improve memory utilization, the dimensions of the data were reduced using the Candid Covariance-Free Incremental Principal Component Analysis (CCIPCA) algorithm. Extensive experiments were conducted to evaluate the proposed lightweight anomaly detection scheme. Results in terms of detection accuracy, memory utilization, computational complexity, and communication overhead show that the proposed scheme is effective and efficient compared few existing schemes evaluated. The proposed anomaly detection scheme achieved the accuracy higher than 98%, with (𝑛𝑑) memory utilization and no communication overhead.


Sign in / Sign up

Export Citation Format

Share Document