scholarly journals Analysis of Modular Stator PMSM Manufactured Using Oriented Steel

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6583
Author(s):  
Anmol Aggarwal ◽  
Matthew Meier ◽  
Elias Strangas ◽  
John Agapiou

Oriented steel has higher permeability and lower losses in the direction of orientation (the rolling direction) than non-oriented steel. However, in the transverse direction, oriented steel typically has lower permeability and higher losses. The strategic use of oriented steel in a modular Permanent Magnet Synchronous Machine (PMSM) stator can improve machine performance, particularly when compared to a machine designed with non-oriented steel, by increasing both torque and efficiency. Typically, steel manufacturers provide magnetic properties only in the rolling and transverse directions. Furthermore, in modern Finite Element Analysis (FEA) software, the magnetic properties between the rolling and transverse directions are interpolated using an intrinsic mathematical model. However, this interpolation method has proven to be inaccurate; to resolve this issue, an improved model was proposed in the literature. This model requires the magnetic properties of the oriented steel in between the rolling and transverse directions. Therefore, a procedure for extracting the magnetic properties of oriented steel is required. The objective of this work is to propose a method of determining the magnetic properties of oriented steel beyond just the oriented and transverse directions. In this method, flux-injecting probes, also known as sensors, are used to inject and control the flux density in an oriented steel segmented stator in order to extract the properties of the oriented steel. These extracted properties are then used to model an oriented steel modular stator PMSM. The machine’s average torque and core losses are compared with conventional, non-modular, non-oriented steel stator PMSM, and modular, non-oriented steel stator PMSM. It is shown that both the average torque and the core loss of the oriented steel modular stator PMSM have better performance at the selected number of segments than either of the two non-oriented steel stators.

2009 ◽  
Vol 1243 ◽  
Author(s):  
N.M. López G. ◽  
A. Salinas R.

ABSTRACTThe effect of plastic deformation and subsequent annealing on the microstructure and magnetic properties (hysteresis core losses) of non-oriented grain semi-processed Si-Al electrical steel sheet are investigated. Plastic deformation of strip samples is performed by cold-rolling (5–20% reduction in thickness) along the original rolling direction. Annealing is carried out in air during 1 or 60 minutes at temperatures between 650 and 850°C. Measurements of B-H hysteresis curves are performed using a Vibrating Sample Magnetometer and characterization of annealed microstructures is carried out using optical metallography. The results show that hysteresis losses increase by a factor between 1.2 and 2.0 as the magnitude of the applied plastic deformation increases from 5 to 20% reduction in thickness. The rate of recovery of energy losses as a result of annealing depends on annealing time. Short annealing times produce full recovery of the effect of cold work and values of energy losses lower than in undeformed material. The magnitude of the additional recovery increases with strain but does not depend on annealing temperature. Long annealing times, which induce complete recrystallization, and either normal or abnormal grain growth, enhance recovery of hysteresis losses. The rate of recovery increases as both the strain and annealing temperature increase. Recovery of the deformation microstructure and internal stress relief produce only limited recovery of the magnetic properties. However, recrystallization and grain growth brings about a significant decrease in hysteresis losses.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1076
Author(s):  
Wenfei Yu ◽  
Wei Hua ◽  
Zhiheng Zhang

Accurate prediction of core losses plays an important role in the design and analysis of flux-switching permanent magnet (FSPM) machines, especially during high-speed and high-frequency operation. Firstly, based on the numerical method, a high-frequency core loss prediction method considering a DC-bias magnetization component and local hysteresis loops as well as the harmonic effect is proposed. Secondly, the magnetizing characteristics of the silicon steel sheet and, consequently, the core loss of the electrical steel used as the core lamination are measured. Then, the loss coefficient of each core loss component is obtained by the data fitting tool. Based on the proposed method, the stator and rotor core losses of a three-phase, 12-stator-slot, and 10-rotor-pole (12/10) FSPM machine with different soft iron materials and driving modes are calculated. Finally, the results of the numerical method are verified by conventional finite element analysis.


2000 ◽  
Vol 644 ◽  
Author(s):  
Akihiro Makino ◽  
Akihisa Inoue ◽  
Tuyoshi Masumoto

AbstractThe structure, the soft magnetic properties and the core losses for Fe-Zr-Nb-B(-Cu) nanocrystalline alloys were investigated. It has been already reported that the typical ternary nanocrystalline Fe90Zr7B3 and Fe84Nb7B9 alloys exhibit good soft magnetic properties and a small negative and a small positive magnetostriction (λs), respectively. The soft magnetic properties of the nanocrystalline Fe84–90(Zr, Nb)7B3–9 quaternary alloys with mixed compositions of Fe90Zr7B3 and Fe84Nb7B9 cannot be improved whereas very small magnetostrictions are obtained. The quaternary alloys with 7 at% (Zr + Nb) have structures of an amorphous with α-Fe phases on the free and roll-contacted surfaces at an as-quenched state. The crystalline surface layers deteriorate the soft magnetic properties at a crystallized state. The high saturation magnetic induction of 1.64 T, the high permeability of 60,000 at 1 kHz and the very low core loss of 0.9 W/kg at 1.4 T and 50 Hz are obtained for the Fe85.5(Zr1/3Nb2/3)6B8.5 alloy containing 6 at% of (Zr + Nb) content with nearly zero-λs produced by crystallizing the single amorphous phase without the crystalline surface layers. The thermal stability of the core loss of the quaternary alloy is significantly higher than that of the Fe78Si9B13 amorphous alloy. The crystalline surface layers of the Fe84–90(Zr, Nb)7B3–9 quaternary alloys disappear by 1 at% Cu addition, which results in significant improvement of the soft magnetic properties at a crystallized state.


Author(s):  
Guohui Yang ◽  
Chengning Zhang ◽  
Shuo Zhang

Permanent magnet synchronous machines (PMSMs) are widely used owing to high power density, high efficiency, etc. Core losses account for a significant component of the total loss in PMSMs beside winding losses. Therefore, it is necessary to consider core losses when designing PMSMs according to actual research applications. In this paper, taking four typical rotor structures (surface-mounted, embedded, “—” shape, “V” shape) as examples, an analysis method is proposed to predict the influence of different rotor structures on core loss of PMSMs. In the case of the same stator and winding structures, due to the influence of the rotor structure on the magnetic circuit, the corresponding variation law of the magnetic field in the stator core is studied. This method analyzes the radial and tangential components of magnetic flux density vector of the 4 representative points (stator tooth tip, middle tooth and yoke part), and then evaluates the entire core loss through finite element analysis results. In order to verify the method, a prototype was manufactured. The experimental results show good performance of the proposed method of this paper. It provides reference for selecting the appropriate rotor structure and designing the corresponding PMSM according to different specification.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
A. S. Abdel-Khalik

The performance of fault-tolerant modular permanent magnet machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low-order harmonics in the stator magnetomotive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional-phase-model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Armco DI-MAX nonoriented electrical steels have practically identical magnetic properties in any direction of magnetism in the plane of the material. They have superior permeability at high inductions, low average core loss, good gage uniformity, excellent flatness, and a high stacking factor. This datasheet provides information on composition, physical properties, hardness, and tensile properties. Filing Code: FE-88. Producer or source: Armco Inc., Specialty Steels Division. Originally published April 1989, revised January 1999.


2017 ◽  
Vol 68 (9) ◽  
pp. 2162-2165 ◽  
Author(s):  
Katarzyna Bloch ◽  
Mihail Aurel Titu ◽  
Andrei Victor Sandu

The paper presents the results of structural and microstructural studies for the bulk Fe65Co10Y5B20 and Fe63Co10Y7B20 alloys. All the rods obtained by the injection casting method were fully amorphous. It was found on the basis of analysis of distribution of hyperfine field induction that the samples of Fe65Co10Y5B20 alloy are characterised with greater atomic packing density. Addition of Y to the bulk amorphous Fe65Co10Y5B20 alloy leads to the decrease of the average induction of hyperfine field value. In a strong magnetic field (i.e. greater than 0.4HC), during the magnetization process of the alloys, where irreversible processes take place, the core losses associated with magnetization and de-magnetization were investigated.


2014 ◽  
Vol 887-888 ◽  
pp. 252-256
Author(s):  
Zhun Li ◽  
Jing Liu ◽  
Shi De Li ◽  
Ze Lin Zheng

A high grade non-oriented electrical steel final annealing product was processed by stress relief annealing experiments under pure hydrogen atmosphere using different process parameters. The samples were compared in the aspects of magnetic properties and anisotropy, then analyzed the phenomena concerned with grain size, texture and precipitates aspects. The experiments showed that the samples magnetic properties were most improved in the 850 degrees stress relief annealing experiment, thus providing a reference method for non-oriented silicon steel stress relief annealing experiments and to obtain low core loss non-oriented silicon steel.


Sign in / Sign up

Export Citation Format

Share Document