scholarly journals Chemically Influenced Self-Preservation Kinetics of CH4 Hydrates below the Sub-Zero Temperature

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6765
Author(s):  
Jyoti Shanker Pandey ◽  
Saad Khan ◽  
Nicolas von Solms

The self-preservation property of CH4 hydrates is beneficial for the transportation and storage of natural gas in the form of gas hydrates. Few studies have been conducted on the effects of chemicals (kinetic and thermodynamic promoters) on the self-preservation properties of CH4 hydrates, and most of the available literature is limited to pure water. The novelty of this work is that we have studied and compared the kinetics of CH4 hydrate formation in the presence of amino acids (hydrophobic and hydrophilic) when the temperature dropped below 0 °C. Furthermore, we also investigated the self-preservation of CH4 hydrate in the presence of amino acids. The main results are: (1) At T < 0 ℃, the formation kinetics and the total gas uptake improved in the presence of histidine (hydrophilic) at concentrations greater than 3000 ppm, but no significant change was observed for methionine (hydrophobic), confirming the improvement in the formation kinetics (for hydrophilic amino acids) due to increased subcooling; (2) At T = −2 °C, the presence of amino acids improved the metastability of CH4 hydrate. Increasing the concentration from 3000 to 20,000 ppm enhanced the metastability of CH4 hydrate; (3) Metastability was stronger in the presence of methionine compared to histidine; (4) This study provides experimental evidence for the use of amino acids as CH4 hydrate stabilizers for the storage and transportation of natural gas due to faster formation kinetics, no foam during dissociation, and stronger self-preservation.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5661
Author(s):  
Jyoti Shanker Pandey ◽  
Yousef Jouljamal Daas ◽  
Adam Paul Karcz ◽  
Nicolas von Solms

Geological sequestration of CO2-rich gas as a CO2 capture and storage technique has a lower technical and cost barrier compared to industrial scale-up. In this study, we have proposed CO2 capture and storage via hydrate in geological formation within the hydrate stability zone as a novel technique to contribute to global warming mitigation strategies, including carbon capture, utilization, and storage (CCUS) and to prevent vast methane release into the atmosphere caused by hydrate melting. We have attempted to enhance total gas uptake and CO2 capture efficiency in hydrate in the presence of kinetic promoters while using diluted CO2 gas (CO2-N2 mixture). Experiments are performed using unfrozen sands within hydrate stability zone condition and in the presence of low dosage surfactant and amino acids. Hydrate formation parameters, including sub-cooling temperature, induction time, total gas uptake, and split fraction, are calculated during the single-step formation and dissociation process. The effect of sands with varying particle sizes (160–630 µm, 1400–5000 µm), low dosage promoter (500–3000 ppm) and CO2 concentration in feed gas (20–30 mol%) on formation kinetic parameters was investigated. Enhanced formation kinetics are observed in the presence of surfactant (1000–3000 ppm) and hydrophobic amino acids (3000 ppm) at 120 bar and 1 ℃ experimental conditions. We report induction time in the range of 7–170 min and CO2 split fraction (0.60–0.90) in hydrate for 120 bar initial injection pressure. CO2 split fraction can be enhanced by reducing sand particle size or increasing the CO2 mol% in incoming feed gas at given injection pressure. This study also reports that formation kinetics in a porous medium are influenced by hydrate morphology. Hydrate morphology influences gas and water migration within sediments and controls pore space or particle surface correlation with the formation kinetics within coarse sediments. This investigation demonstrates the potential application of bio-friendly amino acids as promoters to enhance CO2 capture and storage within hydrate. Sufficient contact time at gas-liquid interface and higher CO2 separation efficiency is recorded in the presence of amino acids. The findings of this study could be useful in exploring the promoter-driven pore habitat of CO2-rich hydrates in sediments to address climate change.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 598 ◽  
Author(s):  
Pandey ◽  
Daas ◽  
von Solms

Sodium dodecyl sulfate (SDS) is a well-known surfactant, which can accelerate methane hydrate formation. In this work, methane hydrate formation kinetics were studied in the presence of SDS using a rocking cell apparatus in both temperature-ramping and isothermal modes. Ramping and isothermal experiments together suggest that SDS concentration plays a vital role in the formation kinetics of methane hydrate, both in terms of induction time and of final gas uptake. There is a trade-off between growth rate and gas uptake for the optimum SDS concentration, such that an increase in SDS concentration decreases the induction time but also decreases the gas storage capacity for a given volume. The experiments also confirm the potential use of the rocking cell for investigating hydrate promoters. It allows multiple systems to run in parallel at similar experimental temperature and pressure conditions, thus shortening the total experimentation time. Understanding methane hydrate formation and storage using SDS can facilitate large-scale applications such as natural gas storage and transportation.


2016 ◽  
Author(s):  
Oluwatoyin Akinsete ◽  
Sunday Isehunwa

ABSTRACT Natural gas, one of the major sources of energy for the 21st century, provides more than one-fifth of the worldwide energy needs. Storing this energy in gas hydrate form presents an alternative to its storage and smart solution to its flow with the rest of the fluid without creating a difficulty in gas pipeline systems due to pressure build-up. This study was design to achieve this situation in a controlled manner using a simple mathematical model, by applying mass and momentum conservation principles in canonical form to non-isothermal multiphase flow, for predicting the onset conditions of hydrate formation and storage capacity growth of the gas hydrate in pipeline systems. Results from this developed model shows that the increase in hydrate growth, the more the hydrate storage capacity of gas within and along the gas pipeline. The developed model is therefore recommended for management of hydrate formation for natural gas storage and transportation in gas pipeline systems.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 124 ◽  
Author(s):  
Pandey ◽  
Daas ◽  
Solms

In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500–3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000–3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or inhibitors for various applications.


Fuel ◽  
2016 ◽  
Vol 182 ◽  
pp. 907-919 ◽  
Author(s):  
Hari Prakash Veluswamy ◽  
Sharad Kumar ◽  
Rajnish Kumar ◽  
Pramoch Rangsunvigit ◽  
Praveen Linga

Sign in / Sign up

Export Citation Format

Share Document