scholarly journals Investigation of AC Electrical Properties of MXene-PCL Nanocomposites for Application in Small and Medium Power Generation

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7123
Author(s):  
Tomasz N. Kołtunowicz ◽  
Piotr Gałaszkiewicz ◽  
Konrad Kierczyński ◽  
Przemysław Rogalski ◽  
Paweł Okal ◽  
...  

The paper examined Ti3C2Tx MXene (T—OH, Cl or F), which is prepared by etching a layered ternary carbide Ti3AlC2 (312 MAX-phase) precursor and deposited on a polycaprolactone (PCL) electrospun membrane (MXene-PCL nanocomposite). X-ray Diffraction analysis (XRD) and Scanning Electron Microscopy (SEM) indicates that the obtained material is pure Ti3C2 MXene. SEM of the PCL-MXene composite demonstrate random Ti3C2 distribution over the nanoporous membrane. Results of capacitance, inductance, and phase shift angle studies of the MXene-PCL nanocomposite are presented. It was found that the frequency dependence of the capacitance exhibited a clear sharp minima in the frequency range of 50 Hz to over 104 Hz. The frequency dependence of the inductance shows sharp maxima, the position of which exactly coincides with the position of the minima for the capacitance, which indicates the occurrence of parallel resonances. Current conduction occurs by electron tunneling between nanoparticles. In the frequency range from about 104 Hz to about 105 Hz, there is a broad minimum on the inductance relationship. The position of this minimum coincides exactly with the position of the maximum of the phase shift angle—its amplitude is close to 90°. The real value of the inductance of the nanocomposite layer was determined to be about 1 H. It was found that the average value of the distance over which the electron tunnels was determined with some approximation to be about 5.7 nm and the expected value of the relaxation time to be τM ≈ 3 × 10−5 s.

Author(s):  
Linda Hassaine ◽  
Mohamed Rida Bengourina

<p class="Abstract">This paper presents the optimization design and a detailed implementation in FPGA (Field-Programmable Gate Array) of a power control strategy. This strategy is based on the phase shift angle of the inverter output voltage with respect to the grid voltage and DSPWM (Digital Sinusoidal Pulse Width Modulation) patterns “Phase shift angle-DSPWM” for an inverter for photovoltaic system connected to the grid. The proposed control can synchronize a sinusoidal inverter output current with a grid voltage and control the power injected into the grid. Detailed development of a digital controller with lower hardware and computation requirement is proposed. Description on the digital implementation of the A/D converter, the PI compensator, the phase shift and the DPWM, is provided. This digital control exhibit simplicity, reduction of the memory requirements and power calculation for the control. The functional structure of this system with digital control has been validated with simulations and experimental results.</p>


2017 ◽  
Vol 5 (1) ◽  
pp. 91-118 ◽  
Author(s):  
Lucky Pradigta Setiya Raharja ◽  
Ony Asrarul Q. ◽  
Zainal Arief ◽  
Novie Ayub Windarko

In this research, modified PWM has been applied to the multilevel inverter (MLI) single-phase three-level diode clamp full bridge. Modified PWM is performed to produce minimum Total Harmonic Distortion (THD) the voltage because the quality of the good voltage is indicated by small THD. The THD indicates the quality of AC voltage source. The THD standard by the IEEE STD 519-1992 Harmonic Voltage Limits is 5% and the Pacific Corp standard is 8%, if the THD value is greater than the THD standard it can cause the electronic load to be damaged due to the damaged waveform. Modified PWM is applied by adding a 50 Hz sinusoidal reference signal with a sinusoidal signal which has a certain amplitude, frequency and phase shift angle. The frequency of the adder signal is the frequency at which the value of the individual harmonic voltage appears (n harmonic). To get maximum result, optimization using Genetic Algorithm (GA) method to determinate amplitude & phase shift angle done. The result of implementation hardware with modified PWM shows smaller THD voltage compared to the THD voltage with Sinusoidal Pulse Width Modulation (SPWM) switching up to 0.19 or decrease 65,51 % for modified PWM of harmonic injection n = 7 with GA optimization ma= 0.8 (A=0.0936 and ø = 0 rad) and up to 0.08 or decrease 12,30 % for modified PWM of harmonic injection n = 22 with GA optimization ma = 0.4 (A=0.1221 and ø = 0 rad).


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5511 ◽  
Author(s):  
Pawel Zukowski ◽  
Przemyslaw Rogalski ◽  
Tomasz N. Koltunowicz ◽  
Konrad Kierczynski ◽  
Jan Subocz ◽  
...  

This study investigates the frequency–temperature relations between the phase angle φ and admittance Y for composites of cellulose, synthetic ester, and water nanoparticles. We determined the activation energy value for the relaxation time of a phase shift angle ΔWφ ≈ (0.783 ± 0.0744) eV, which was related to the shift of φ(f) waveforms in higher frequency area with increasing temperature. We found that the position of admittance frequency waveforms in double logarithmic coordinates was simultaneously influenced by the temperature dependence of admittance and its relaxation time. Activation energy values for the relaxation time of admittance ΔWτ ≈ (0.796 ± 0.0139) eV and the activation energy value of admittance ∆WY ≈ (0.800 ± 0.0162) eV were determined. It was found that all three activation energy values were identical and their average was ΔW ≈ (0.793 ± 0.0453) eV. Impregnation with synthetic ester resulted in a decrease of activation energy by 0.26 eV compared to the impregnation with insulating oil. This was related to higher dielectric permittivity of the synthetic ester.


Measurement ◽  
2021 ◽  
Vol 185 ◽  
pp. 110041 ◽  
Author(s):  
Pawel Zukowski ◽  
Przemyslaw Rogalski ◽  
Tomasz N. Koltunowicz ◽  
Konrad Kierczynski ◽  
Jan Subocz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document