scholarly journals Localization of Disconnection Faults in PV Installations Using the Multiple Frequencies Injection Method

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7346
Author(s):  
Jae-Sub Ko ◽  
Dae-Kyong Kim

This paper proposes a method to detect disconnection faults and their exact location in PV systems. The proposed method injects multiple frequencies into a PV system with a transmitter and detects the injected signal using a receiver. The signal detected by the receiver exhibits different frequency characteristics on a disconnection failure. Based on this characteristic, a disconnection failure can be detected. In addition, by detecting the frequency radiated through the disconnection point, the exact disconnection point can be detected.

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

A reconfiguration technique using a switched-capacitor (SC)-based voltage equalizer differential power processing (DPP) concept is proposed in this paper for photovoltaic (PV) systems at a cell/subpanel/panel-level. The proposed active diffusion charge redistribution (ADCR) architecture increases the energy yield during mismatch and adds a voltage boosting capability to the PV system under no mismatch by connected the available PV cells/panels in series. The technique performs a reconfiguration by measuring the PV cell/panel voltages and their irradiances. The power balancing is achieved by charge redistribution through SC under mismatch conditions, e.g., partial shading. Moreover, PV cells/panels remain in series under no mismatch. Overall, this paper analyzes, simulates, and evaluates the effectiveness of the proposed DPP architecture through a simulation-based model prepared in PSIM. Additionally, the effectiveness is also demonstrated by comparing it with existing conventional DPP and traditional bypass diode architecture.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4150
Author(s):  
Lluís Monjo ◽  
Luis Sainz ◽  
Juan José Mesas ◽  
Joaquín Pedra

Photovoltaic (PV) power systems are increasingly being used as renewable power generation sources. Quasi-Z-source inverters (qZSI) are a recent, high-potential technology that can be used to integrate PV power systems into AC networks. Simultaneously, concerns regarding the stability of PV power systems are increasing. Converters reduce the damping of grid-connected converter systems, leading to instability. Several studies have analyzed the stability and dynamics of qZSI, although the characterization of qZSI-PV system dynamics in order to study transient interactions and stability has not yet been properly completed. This paper contributes a small-signal, state-space-averaged model of qZSI-PV systems in order to study these issues. The model is also applied to investigate the stability of PV power systems by analyzing the influence of system parameters. Moreover, solutions to mitigate the instabilities are proposed and the stability is verified using PSCAD time domain simulations.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1943
Author(s):  
Bader N. Alajmi ◽  
Mostafa I. Marei ◽  
Ibrahim Abdelsalam ◽  
Mohamed F. AlHajri

A high-frequency multi-port (HFMP) direct current (DC) to DC converter is presented. The proposed HFMP is utilized to interface a photovoltaic (PV) system. The presented HFMP is compact and can perform maximum power point tracking. It consists of a high-frequency transformer with many identical input windings and one output winding. Each input winding is connected to a PV module through an H-bridge inverter, and the maximum PV power is tracked using the perturb and observe (P&O) technique. The output winding is connected to a DC bus through a rectifier. The detailed analysis and operation of the proposed HFMP DC-DC converter are presented. Extensive numerical simulations are conducted, using power system computer aided design (PSCAD)/electromagnetic transients including DC (EMTDC) software, to evaluate the operation and dynamic behavior of the proposed PV interfacing scheme. In addition, an experimental setup is built to verify the performance of the HFMP DC-DC converter.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 751
Author(s):  
Mariam A. Sameh ◽  
Mostafa I. Marei ◽  
M. A. Badr ◽  
Mahmoud A. Attia

During the day, photovoltaic (PV) systems are exposed to different sunlight conditions in addition to partial shading (PS). Accordingly, maximum power point tracking (MPPT) techniques have become essential for PV systems to secure harvesting the maximum possible power from the PV modules. In this paper, optimized control is performed through the application of relatively newly developed optimization algorithms to PV systems under Partial Shading (PS) conditions. The initial value of the duty cycle of the boost converter is optimized for maximizing the amount of power extracted from the PV arrays. The emperor penguin optimizer (EPO) is proposed not only to optimize the initial setting of duty cycle but to tune the gains of controllers used for the boost converter and the grid-connected inverter of the PV system. In addition, the performance of the proposed system based on the EPO algorithm is compared with another newly developed optimization technique based on the cuttlefish algorithm (CFA). Moreover, particle swarm optimization (PSO) algorithm is used as a reference algorithm to compare results with both EPO and CFA. PSO is chosen since it is an old, well-tested, and effective algorithm. For the evaluation of performance of the proposed PV system using the proposed algorithms under different PS conditions, results are recorded and introduced.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3863
Author(s):  
Tiago Alves ◽  
João Paulo N. Torres ◽  
Ricardo A. Marques Lameirinhas ◽  
Carlos A. F. Fernandes

The effect of partial shading in photovoltaic (PV) panels is one of the biggest problems regarding power losses in PV systems. When the irradiance pattern throughout a PV panel is inequal, some cells with the possibility of higher power production will produce less and start to deteriorate. The objective of this research work is to present, test and discuss different techniques to help mitigate partial shading in PV panels, observing and commenting the advantages and disadvantages for different PV technologies under different operating conditions. The motivation is to contribute with research, simulation, and experimental work. Several state-of-the-artsolutions to the problem will be presented: different topologies in the interconnection of the panels; different PV system architectures, and also introducing new solution hypotheses, such as different cell interconnections topologies. Alongside, benefits and limitations will be discussed. To obtain actual results, the simulation work was conducted by creating MATLAB/Simulink models for each different technique tested, all centered around the 1M5P PV cell model. The several techniques tested will also take into account different patterns and sizes of partial shading, different PV panel technologies, different values of source irradiation, and different PV array sizes. The results will be discussed and validated by experimental tests.


2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


Author(s):  
Yan Xiao ◽  
Yaoyu Li ◽  
John E. Seem ◽  
Kaushik Rajashekara

This paper presents a Maximum Power Point Tracking (MPPT) strategy for multi-string photovoltaic (PV) systems using the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm. The multi-string PV system considered is a decentralized control configuration, controlling the voltage reference to each PV module but based on the feedback of the total power at the DC bus. This requires only one pair of voltage and current measurements. The MPPT control problem for such topology of multi-string PV systems features a high input dimension, which can dramatically slow down the searching process for the real-time optimization process involved. The SPSA algorithm is considered in this study due to its remarkable capability of fast convergence for high dimensional search problems endorsed by various applications recently. Simulation study is performed for an 8-string PV system, and experimental study is performed for a 4-string PV system. Good performances are observed for both simulation and experimental results.


Author(s):  
Mostafa Ahmed ◽  
Mohamed Abdelrahem ◽  
Ahmed Farhan ◽  
Ibrahim Harbi ◽  
Ralph Kennel

AbstractSensorless strategies become very popular in modern control techniques because they increase the system reliability. Besides, they can be used as back-up control in case of sensor failure. In this paper, a DC-link sensorless control approach is developed, which is suited for grid-connected PV systems. The studied system is a two-stage PV scheme, where the DC–DC stage (boost converter) is controlled using an adaptive step-size perturb and observe (P&O) method. Further, the inverter control is accomplished by voltage oriented control (VOC). Generally, the VOC is implemented with two cascaded control loops, namely an outer voltage loop and an inner current loop. However, in this work, the outer loop is avoided and the reference current is generated using a losses model for the system. The losses model accounts for the most significant losses in the PV system. Moreover, particle swarm optimization (PSO) is utilized to compensate for the unmodeled losses. The PSO is executed offline for the purpose of calculation burden reduction. The proposed approach simplifies the cascaded VOC strategy and eliminates the DC-link voltage sensor, which in turn decreases the cost of the system. Finally, the proposed technique is compared with the conventional one at different atmospheric conditions and validated using MATLAB simulation results.


2021 ◽  
Vol 3 (3) ◽  
pp. 582-600
Author(s):  
Farhad Khosrojerdi ◽  
Stéphane Gagnon ◽  
Raul Valverde

The performance of a photovoltaic (PV) system is negatively affected when operating under shading conditions. Maximum power point tracking (MPPT) systems are used to overcome this hurdle. Designing an efficient MPPT-based controller requires knowledge about power conversion in PV systems. However, it is difficult for nontechnical solar energy consumers to define different parameters of the controller and deal with distinct sources of data related to the planning. Semantic Web technologies enable us to improve knowledge representation, sharing, and reusing of relevant information generated by various sources. In this work, we propose a knowledge-based model representing key concepts associated with an MPPT-based controller. The model is featured with Semantic Web Rule Language (SWRL), allowing the system planner to extract information about power reductions caused by snow and several airborne particles. The proposed ontology, named MPPT-On, is validated through a case study designed by the System Advisor Model (SAM). It acts as a decision support system and facilitate the process of planning PV projects for non-technical practitioners. Moreover, the presented rule-based system can be reused and shared among the solar energy community to adjust the power estimations reported by PV planning tools especially for snowy months and polluted environments.


Sign in / Sign up

Export Citation Format

Share Document