scholarly journals Experimental Analysis of GBM to Expand the Time Horizon of Irish Electricity Price Forecasts

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7587
Author(s):  
Conor Lynch ◽  
Christian O’Leary ◽  
Preetham Govind Kolar Sundareshan ◽  
Yavuz Akin

In response to the inherent challenges of generating cost-effective electricity consumption schedules for dynamic systems, this paper espouses the use of GBM or Gradient Boosting Machine-based models for electricity price forecasting. These models are applied to data streams from the Irish electricity market and achieve favorable results, relative to the current state-of-the-art. Presently, electricity prices are published 10 h in advance of the trade day of interest. Using the forecasting methodology outlined in this paper, an estimation of these prices can be made available one day in advance of the official price publication, thus extending the time available to plan electricity utilization from the grid to be as cost effectively as possible. Extreme Gradient Boosting Machine (XGBM) models achieved a Mean Absolute Error (MAE) of 9.93 for data from 30 September 2018 to 12 December 2019 which is an 11.4% improvement on the avant-garde. LGBM models achieve a MAE score 9.58 on more recent data: the full year of 2020.

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4557 ◽  
Author(s):  
Ilkay Oksuz ◽  
Umut Ugurlu

The intraday electricity markets are continuous trade platforms for each hour of the day and have specific characteristics. These markets have shown an increasing number of transactions due to the requirement of close to delivery electricity trade. Recently, intraday electricity price market research has seen a rapid increase in a number of works for price prediction. However, most of these works focus on the features and descriptive statistics of the intraday electricity markets and overlook the comparison of different available models. In this paper, we compare a variety of methods including neural networks to predict intraday electricity market prices in Turkish intraday market. The recurrent neural networks methods outperform the classical methods. Furthermore, gated recurrent unit network architecture achieves the best results with a mean absolute error of 0.978 and a root mean square error of 1.302. Moreover, our results indicate that day-ahead market price of the corresponding hour is a key feature for intraday price forecasting and estimating spread values with day-ahead prices proves to be a more efficient method for prediction.


2021 ◽  
pp. 0958305X2110449
Author(s):  
Irfan Ullah ◽  
Kai Liu ◽  
Toshiyuki Yamamoto ◽  
Rabia Emhamed Al Mamlook ◽  
Arshad Jamal

The rapid growth of transportation sector and related emissions are attracting the attention of policymakers to ensure environmental sustainability. Therefore, the deriving factors of transport emissions are extremely important to comprehend. The role of electric vehicles is imperative amid rising transport emissions. Electric vehicles pave the way towards a low-carbon economy and sustainable environment. Successful deployment of electric vehicles relies heavily on energy consumption models that can predict energy consumption efficiently and reliably. Improving electric vehicles’ energy consumption efficiency will significantly help to alleviate driver anxiety and provide an essential framework for operation, planning, and management of the charging infrastructure. To tackle the challenge of electric vehicles’ energy consumption prediction, this study aims to employ advanced machine learning models, extreme gradient boosting, and light gradient boosting machine to compare with traditional machine learning models, multiple linear regression, and artificial neural network. Electric vehicles energy consumption data in the analysis were collected in Aichi Prefecture, Japan. To evaluate the performance of the prediction models, three evaluation metrics were used; coefficient of determination ( R2), root mean square error, and mean absolute error. The prediction outcome exhibits that the extreme gradient boosting and light gradient boosting machine provided better and robust results compared to multiple linear regression and artificial neural network. The models based on extreme gradient boosting and light gradient boosting machine yielded higher values of R2, lower mean absolute error, and root mean square error values have proven to be more accurate. However, the results demonstrated that the light gradient boosting machine is outperformed the extreme gradient boosting model. A detailed feature important analysis was carried out to demonstrate the impact and relative influence of different input variables on electric vehicles energy consumption prediction. The results imply that an advanced machine learning model can enhance the prediction performance of electric vehicles energy consumption.


Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 341 ◽  
Author(s):  
Qingwen Jin ◽  
Xiangtao Fan ◽  
Jian Liu ◽  
Zhuxin Xue ◽  
Hongdeng Jian

Coastal cities in China are frequently hit by tropical cyclones (TCs), which result in tremendous loss of life and property. Even though the capability of numerical weather prediction models to forecast and track TCs has considerably improved in recent years, forecasting the intensity of a TC is still very difficult; thus, it is necessary to improve the accuracy of TC intensity prediction. To this end, we established a series of predictors using the Best Track TC dataset to predict the intensity of TCs in the Western North Pacific with an eXtreme Gradient BOOSTing (XGBOOST) model. The climatology and persistence factors, environmental factors, brainstorm features, intensity categories, and TC months are considered inputs for the models while the output is the TC intensity. The performance of the XGBOOST model was tested for very strong TCs such as Hato (2017), Rammasum (2014), Mujiage (2015), and Hagupit (2014). The results obtained show that the combination of inputs chosen were the optimal predictors for TC intensification with lead times of 6, 12, 18, and 24 h. Furthermore, the mean absolute error (MAE) of the XGBOOST model was much smaller than the MAEs of a back propagation neural network (BPNN) used to predict TC intensity. The MAEs of the forecasts with 6, 12, 18, and 24 h lead times for the test samples used were 1.61, 2.44, 3.10, and 3.70 m/s, respectively, for the XGBOOST model. The results indicate that the XGBOOST model developed in this study can be used to improve TC intensity forecast accuracy and can be considered a better alternative to conventional operational forecast models for TC intensity prediction.


2021 ◽  
Vol 27 (4) ◽  
pp. 279-286
Author(s):  
Atakan Başkor ◽  
Yağmur Pirinçci Tok ◽  
Burcu Mesut ◽  
Yıldız Özsoy ◽  
Tamer Uçar

Objectives: Orally disintegrating tablets (ODTs) can be utilized without any drinking water; this feature makes ODTs easy to use and suitable for specific groups of patients. Oral administration of drugs is the most commonly used route, and tablets constitute the most preferable pharmaceutical dosage form. However, the preparation of ODTs is costly and requires long trials, which creates obstacles for dosage trials. The aim of this study was to identify the most appropriate formulation using machine learning (ML) models of ODT dexketoprofen formulations, with the goal of providing a cost-effective and timereducing solution.Methods: This research utilized nonlinear regression models, including the k-nearest neighborhood (k-NN), support vector regression (SVR), classification and regression tree (CART), bootstrap aggregating (bagging), random forest (RF), gradient boosting machine (GBM), and extreme gradient boosting (XGBoost) methods, as well as the t-test, to predict the quantity of various components in the dexketoprofen formulation within fixed criteria.Results: All the models were developed with Python libraries. The performance of the ML models was evaluated with R2 values and the root mean square error. Hardness values of 0.99 and 2.88, friability values of 0.92 and 0.02, and disintegration time values of 0.97 and 10.09 using the GBM algorithm gave the best results.Conclusions: In this study, we developed a computational approach to estimate the optimal pharmaceutical formulation of dexketoprofen. The results were evaluated by an expert, and it was found that they complied with Food and Drug Administration criteria.


2020 ◽  
Author(s):  
Rui Li ◽  
Lulu Cui ◽  
Yilong Zhao ◽  
Wenhui Zhou ◽  
Hongbo Fu

Abstract. High loadings of nitrate (NO3−) in the aerosol over China significantly exacerbates the air quality and poses a great threaten on ecosystem safety through dry/wet deposition. Unfortunately, limited ground-level observation data makes it challenging to fully reflect the spatial pattern of NO3− level across China. Up to date, the long-term monthly NO3− datasets at a high resolution were still missing, which restricted the assessment of human health and ecosystem safety. Therefore, a unique monthly NO3− dataset at 0.25° resolution over China during 2005–2015 was developed by assimilating surface observation, satellite product, meteorological data, land use types and other covariates using an ensemble model combining random forest (RF), gradient boosting decision tree (GBDT), and extreme gradient boosting (XGBoost). The new developed product featured excellent cross-validation R2 value (0.78) and relatively lower root-mean-square error (RMSE: 1.19 μg/m3) and mean absolute error (MAE: 0.81 μg/m3). Besides, the dataset also exhibited relatively robust performance at the spatial and temporal scale. Moreover, the dataset displayed good agreement with (R2 = 0.85, RMSE = 0.74 μg/m3, and MAE = 0.55 μg/m3) some unlearning data collected from previous studies. The spatiotemporal variations of the developed product were also shown. The estimated NO3− concentration showed the highest value in North China Plain (NCP) (3.55 ± 1.25 μg/m3), followed by Yangtze River Delta (YRD (2.56 ± 1.12  g/m3)), Pearl River Delta (PRD (1.68 ± 0.81 μg/m3)), Sichuan Basin (1.53 ± 0.63 μg/m3), and the lowest one in Tibetan Plateau (0.42 ± 0.25 μg/m3). The higher ambient NO3− concentrations in NCP, YRD, and PRD were closely linked to the dense anthropogenic emissions. Apart from the intensive human activities, poor terrain condition might be a key factor for the serious NO3− pollution in Sichuan Basin. The lowest ambient NO3− concentration in Tibetan Plateau was contributed by the scarce anthropogenic emission and favorable meteorological factors (e.g., high wind speed). In addition, the ambient NO3− concentration showed marked increasing tendency of 0.10 μg/m3/year during 2005–2014 (p 


2020 ◽  
Author(s):  
Ali Movahedi ◽  
Sybil Derrible

As cities keep growing worldwide, so does the demand for key resources such as energy (electricity and gas) and water that residents consume. Meeting the demand for these resources can be challenging and requires an understanding of their consumptions patterns. In this work, we apply XGBoost (Extreme Gradient Boosting) to predict and analyze water and energy consumption in large-scale buildings in New York City. For this, the New York City’s local law 84 extensive dataset was merged with the Primary Land Use Tax Lot Output (PLUTO) dataset as well as with other socio-economic databases. Specifically, we developed three models: electricity, gas, and water consumption. Seven major lessons were learnt in terms of interrelationships between electricity, gas, and water consumption. In particular, water and gas consumption are highly interrelated with one another (often because gas is used for water heating). Furthermore, electricity consumption is affected by building type, and electricity and water consumption are particularly interrelated in nonresidential buildings. Overall, the knowledge gained from the models and from the SHAP analysis can help planners, engineers, and policymakers develop more effective strategies and help them manage the demand for energy and water in large-scale buildings.


Sign in / Sign up

Export Citation Format

Share Document