scholarly journals Multichannel Detection of Acoustic Emissions and Localization of the Source with External and Internal Sensors for Partial Discharge Monitoring of Power Transformers

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7873
Author(s):  
Iago Búa-Núñez ◽  
Julio E. Posada-Román ◽  
José A. García-Souto

The detection of acoustic emissions with multiple channels and different kinds of sensors (external ultrasound electronic sensors and internal optical fiber sensors) for monitoring power transformers is presented. The source localization based on the times of arrival was previously studied, comparing different strategies for solving the location equations and the most efficient strategy in terms of computational and complexity costs versus performance was selected for analyzing the error propagation. The errors of the acoustic emission source location (localization process) are evaluated from the errors of the times of arrival (detection process). A hybrid programming architecture is proposed to optimize both stages of detection and location. It is formed by a virtual instrumentation system for the acquisition, detection and noise reduction of multiple acoustic channels and an algorithms-oriented programming system for the implementation of the localization techniques (back-propagation and multiple-source separation algorithms could also be implemented in this system). The communication between both systems is performed by a packet transfer protocol that allows continuous operation (e.g., on-line monitoring) and remote operation (e.g., a local monitoring and a remote analysis and diagnosis). For the first time, delay errors are modeled and error propagation is applied with this error source and localization algorithms. The 1% mean delay error propagation gives an accuracy of 9.5 mm (dispersion) and a maximum offset of 4 mm (<1% in both cases) in the AE source localization process. This increases proportionally for more severe errors (up to 5% reported). In the case of a multi-channel internal fiber-optic detection system, the resulting location error with a delay error of 2% is negligible when selecting the most repeated calculated position. These aim at determining the PD area of activity with a precision of better than 1% (<10 mm in 110 cm).

Author(s):  
Maoxu Qian ◽  
Mehmet Sarikaya ◽  
Edward A. Stern

It is difficult, in general, to perform quantitative EELS to determine, for example, relative or absolute compositions of elements with relatively high atomic numbers (using, e.g., K edge energies from 500 eV to 2000 eV), to study ELNES (energy loss near edge structure) signal using the white lines to determine oxidation states, and to analyze EXELFS (extended energy loss fine structure) to study short range ordering. In all these cases, it is essential to have high signal-to-noise (S/N) ratio (low systematical error) with high overall counts, and sufficient energy resolution (∽ 1 eV), requirements which are, in general, difficult to attain. The reason is mainly due to three important inherent limitations in spectrum acquisition with EELS in the TEM. These are (i) large intrinsic background in EELS spectra, (ii) channel-to-channel gain variation (CCGV) in the parallel detection system, and (iii) difficulties in obtaining statistically high total counts (∽106) per channel (CH). Except the high background in the EELS spectrum, the last two limitations may be circumvented, and the S/N ratio may be attained by the improvement in the on-line acquisition procedures. This short report addresses such procedures.


2013 ◽  
Vol 40 (12) ◽  
pp. 1945-1949
Author(s):  
Xue-Jin GAO ◽  
Guang-Sheng LIU ◽  
Li CHENG ◽  
Ling-Xiao GENG ◽  
Ji-Xing XUE ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 532
Author(s):  
Henglin Pu ◽  
Chao Cai ◽  
Menglan Hu ◽  
Tianping Deng ◽  
Rong Zheng ◽  
...  

Multiple blind sound source localization is the key technology for a myriad of applications such as robotic navigation and indoor localization. However, existing solutions can only locate a few sound sources simultaneously due to the limitation imposed by the number of microphones in an array. To this end, this paper proposes a novel multiple blind sound source localization algorithms using Source seParation and BeamForming (SPBF). Our algorithm overcomes the limitations of existing solutions and can locate more blind sources than the number of microphones in an array. Specifically, we propose a novel microphone layout, enabling salient multiple source separation while still preserving their arrival time information. After then, we perform source localization via beamforming using each demixed source. Such a design allows minimizing mutual interference from different sound sources, thereby enabling finer AoA estimation. To further enhance localization performance, we design a new spectral weighting function that can enhance the signal-to-noise-ratio, allowing a relatively narrow beam and thus finer angle of arrival estimation. Simulation experiments under typical indoor situations demonstrate a maximum of only 4∘ even under up to 14 sources.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C.W Liu ◽  
R.H Pan ◽  
Y.L Hu

Abstract Background Left ventricular hypertrophy (LVH) is associated with increased risks of cardiovascular diseases. Electrocardiography (ECG) is generally used to screen LVH in general population and electrocardiographic LVH is further confirmed by transthoracic echocardiography (Echo). Purpose We aimed to establish an ECG LVH detection system that was validated by echo LVH. Methods We collected the data of ECGs and Echo from the previous database. The voltage of R- and S-amplitude in each ECG lead were measured twice by a study assistance blinded to the study design, (artificially measured). Another knowledge engineer analyzed row signals of ECG (the algorithm). We firstly check the correlation of R- and S-amplitude between the artificially measured and the algorythm. ECG LVH is defined by the voltage criteria and Echo LVH is defined by LV mass index &gt;115 g/m2 in men and &gt;95 g/m2 in women. Then we use decision tree, k-means, and back propagation neural network (BPNN) with or without heart beat segmentation to establish a rapid and accurate LVH detection system. The ratio of training set to test set was 7:3. Results The study consisted of a sample size of 953 individuals (90% male) with 173 Echo LVH. The R- and S-amplitude were highly correlated between artificially measured and the algorithm R- and S-amplitude regarding that the Pearson correlation coefficient were &gt;0.9 in each lead (the highest r of 0.997 in RV5 and the lowest r of 0.904 in aVR). Without heart beat segmentation, the accuracy of decision tree, k-means, and BPNN to predict echo LVH were 0.74, 0.73 and 0.51, respectively. With heart beat segmentation, the signal of Echo LVH expanded to 1466, and the accuracy to predict ECG LVH were obviously improved (0.92 for decision tree, 0.96 for k-means, and 0.59 for BPNN). Conclusions Our study showed that machine-learning model by BPNN had the highest accuracy than decision trees and k-means based on ECG R- and S-amplitude signal analyses. Figure 1. Three layers of the decision tree Funding Acknowledgement Type of funding source: None


2010 ◽  
Vol 102-104 ◽  
pp. 610-614 ◽  
Author(s):  
Jun Chi ◽  
Lian Qing Chen

A methodology based on relax-type wavelet network was proposed for predicting surface roughness. After the influencing factors of roughness model were analyzed and the modified wavelet pack algorithm for signal filtering was discussed, the structure of artificial network for prediction was developed. The real-time forecast on line was achieved by the nonlinear mapping and learning mechanism in Elman algorithm based on the vibration acceleration and cutting parameters. The weights in network were optimized using genetic algorithm before back-propagation algorithm to reduce learning time.The validation of this methodology is carried out for turning aluminum and steel in the experiments and its prediction error is measured less than 3%.


2013 ◽  
Vol 712-715 ◽  
pp. 2323-2326
Author(s):  
Xing Guang Qi ◽  
Hai Lun Zhang ◽  
Xiao Ting Li

This paper presents an on-line surface defects detection system based on machine vision, which has high speed architecture and can perform high accurate detection for cold-rolled aluminum plate. The system consists of high speed camera and industrial personal computer (IPC) array which connected through Gigabit Ethernet, achieved seamless detection by redundant control. In order to acquire high processing speed, single IPC as processor receives from and deals with only one or two cameras' image. Experimental results show that the system with high accurate detection capability can satisfy the requirement of real time detection and find out the defects on the production line effectively.


Sign in / Sign up

Export Citation Format

Share Document