scholarly journals Investigating Hydrogen-Based Non-Conventional Storage for PV Power in Eco-Energetic Optimization of a Multi-Energy System

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8096
Author(s):  
Marialaura Di Somma ◽  
Martina Caliano ◽  
Viviana Cigolotti ◽  
Giorgio Graditi

Through the integration of multiple energy carriers with related technologies, multi-energy systems (MES) can exploit the synergies coming from their interplay for several benefits towards decarbonization. In such a context, inclusion of Power-to-X technologies in periods of excess renewable electricity supply, removes the need for curtailment of renewable electricity generation. In order to achieve the environmental benefits of MES without neglecting their economic feasibility, the optimal design problem is as crucial as challenging and requires the adoption of a multi-objective approach. This paper extends the results of a previous work, by investigating hydrogen-based non-conventional storage for PV power in the eco-energetic optimization of an MES. The system under study consists of a reversible fuel cell (r-SOC), photovoltaic (PV), electric heat pump, absorption chiller and thermal storage, and allows satisfying the multi-energy needs of a residential end-user. A multi-objective linear problem is established to find the optimal MES configuration including the sizes of the involved technologies with the goal of reducing the total annual cost and the fossil primary energy input. Simulation results are compared with those obtained in previous work with a conventional nanogrid where a combined heat and power (CHP) system with gas-fired internal combustion engine and a battery were present instead of an r-SOC. The optimized configuration of the non-conventional nanogrid allows achieving a maximum primary energy reduction amounting to 66.3%, compared to the conventional nanogrid. In the face of the environmental benefits, the non-conventional nanogrid leads to an increase in total annual costs, which, compared to the conventional nanogrid, is in the range of 41–65%.

Author(s):  
Alta Knizley ◽  
Pedro J. Mago

This paper evaluates the economic, energetic, and environmental feasibility of using two power generation units (PGUs) to operate a combined heat and power (CHP) system. A benchmark building developed by the Department of Energy for a full-service restaurant in Chicago, IL is used to analyze the proposed configuration. This location is selected since it usually provides favorable CHP system conditions in terms of cost and emissions reduction. In this investigation, one PGU is operated at base load to satisfy part of the electricity building requirements (PGU1), while the other is used to satisfy the remaining electricity requirement operating following the electric load (PGU2). The dual-PGU configuration (D-CHP) is modeled for several different scenarios in order to determine the optimum operating range for the selected benchmark building. The dual-PGU scenario is compared with the reference building using conventional technology to determine the economical, energetic, and environmental benefits of this proposed system. This condition is also compared to a CHP system operating following the electric load (FEL) and to a base-loaded CHP system, and it provides greater savings in operating cost, primary energy consumption, and carbon dioxide emissions than the optimized conditions for base loading and FEL.


Author(s):  
C. Thomas Tucker

In recent years there has been great deal of effort made in promoting combined heat and power (CHP) and its related economic and environmental benefits. Much of this effort has been targeted at industries because they are generally the best suited to host a CHP system. In spite of the efforts and the assistance available, many industries do not seem overly enthusiastic about installing CHP. The primary reason appears to be that electric rates are low relative to typically used fuels such as natural gas. This translates into a longer return on investment than most companies can justify in the face of competing internal pressures. Trying to encourage industries to install CHP in a struggling economy is just that much more difficult. When CHP is installed, there is usually another motivating factor such as a “free” fuel or concerns about power reliability. Does this mean that CHP is not the great solution everyone has been talking about? The author does not believe so. However, maybe it is time to redefine the application of CHP by simply reconsidering the boundary under which it is typically applied. For example, by considering CHP at a State boundary as opposed to a facility boundary, CHP takes on an entirely new role. Expanded benefits can now include economic development, homeland security, environmental sustainability, improved power transmission and distribution and job creation.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 745 ◽  
Author(s):  
Daniele Testi ◽  
Paolo Conti ◽  
Eva Schito ◽  
Luca Urbanucci ◽  
Francesco D’Ettorre

Micro-district heating networks based on cogeneration plants and renewable energy technologies are considered efficient, viable and environmentally-friendly solutions to realizing smart multi-energy microgrids. Nonetheless, the energy production from renewable sources is intermittent and stochastic, and cogeneration units are characterized by fixed power-to-heat ratios, which are incompatible with fluctuating thermal and electric demands. These drawbacks can be partially overcome by smart operational controls that are capable of maximizing the energy system performance. Moreover, electrically driven heat pumps may add flexibility to the system, by shifting thermal loads into electric loads. In this paper, a novel configuration for smart multi-energy microgrids, which combines centralized and distributed energy units is proposed. A centralized cogeneration system, consisting of an internal combustion engine is connected to a micro-district heating network. Distributed electric heat pumps assist the thermal production at the building level, giving operational flexibility to the system and supporting the integration of renewable energy technologies, i.e., wind turbines, photovoltaic panels, and solar thermal collectors. The proposed configuration was tested in a hypothetical case study, namely, a University Campus located in Trieste, Italy. The system operation is based on a cost-optimal control strategy and the effect of the size of the cogeneration unit and heat pumps was investigated. A comparison with a conventional configuration, without distributed heat pumps, was also performed. The results show that the proposed configuration outperformed the conventional one, leading to a total-cost saving of around 8%, a carbon emission reduction of 11%, and a primary energy saving of 8%.


Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 124-140
Author(s):  
Fabio Orecchini ◽  
Adriano Santiangeli ◽  
Fabrizio Zuccari

Abstract To pursue the goal of sustainable mobility, two main paths can be considered: the electrification of vehicles and the use of biofuels, replacing fossil fuels, in internal combustion engine (ICE) vehicles. This paper proposes an analysis of different possible scenarios for automobiles towards a CO2-neutral energy system, in the path of the use of biofuels and the production, distribution and use of biomethane. The study, an update of work presented previously, focuses on different scenarios that take into account numerous parameters that affect the overall efficiency of the production-and-use process. A Well-to-Wheel analysis is used to estimate the primary energy savings and reduction in greenhouse-gas emissions compared both to the use of fossil-based methane and to other fuels and automotive technologies. In particular, the study shows that the Non-Renewable Primary Energy Consumption (NRPEC) for biomethane is slightly higher (+9%) than that of biodiesel, but significantly lower than those of all the other power trains analysed: –69% compared to the battery electric vehicle (BEV) and –55% compared to bioethanol. Compared to the use of fossil natural gas, the NRPEC is reduced to just over a third (2.81). With regard to CO2 emissions, biomethane has the lowest values: –69% compared to BEV, –176% compared to bioethanol and –124% with respect to biodiesel. Compared to the use of fossil natural gas, the CO2 emissions are reduced over a third (3.55). Moreover, the paper shows that biomethane can completely cover the consumption of fossil methane for vehicles in Italy, proposing two different hypotheses: maximum production and minimum production. It is evident, therefore, that biomethane production can completely cover the consumption of fossil methane for vehicles: this means that the use of biomethane in the car can lead to a reduction in NRPEC equal to 28.9 × 106 GJ/year and a reduction of CO2 emissions equal to 1.9 × 106 t/year.


2003 ◽  
Vol 801 ◽  
Author(s):  
Qidong Wang ◽  
Changpin Chen Yongquan Lei ◽  
Lixing Chen ◽  
Xinghua Wang

ABSTRACTAccording to the stages of development, the hydrogen program in China can be divided into four periods since 1978. The chief activities and accomplishments in each period on hydrogen production, hydrogen processing and use of hydrogen in the form of energy are introduced. The work of consciously transforming the present energy system based upon coal-firing power plants and petroleum powered internal combustion engine vehicles into a hydrogen economy system with primary energy mainly based on renewable energies and recycling of biomass and the use of both electricity and hydrogen as energy vectors is just on its start.


2021 ◽  
Vol 11 (7) ◽  
pp. 3033
Author(s):  
Michele De Santis ◽  
Luca Silvestri ◽  
Antonio Forcina ◽  
Gianpaolo Di Bona ◽  
Anna Rita Di Fazio

Most industrial trucks are equipped with hydraulic systems designed for specific operations, for which the required power is supplied by the internal combustion engine (ICE). The largest share of the power consumption is required by the hydraulic system during idling operations, and, consequently, the current literature focuses on energy saving strategies for the hydraulic system rather than making the vehicle traction more efficient. This study presents the preliminary realization of an electric-powered hydraulic pump system (e-HPS) that drives the lifting of the dumpster and the garbage compaction in a waste compactor truck, rather than traditional ICE-driven hydraulic pump systems (ICE-HPSs). The different components of the e-HPS are described and the battery pack was modelled using the kinetic battery model. The end-of-life of the battery pack was determined to assess the economic feasibility of the proposed e-HPS for the truck lifespan, using numerical simulations. The aim was twofold: to provide an implementation method to retrofit the e-HPS to a conventional waste compactor truck and to assess its economic feasibility, investigating fuel savings during the use phase and the consequent reduction of CO2 emissions. Results show that the total lifespan cost saving achieved a value of 65,000 €. Furthermore, total CO2 emissions for the e-HPS were about 80% lower than those of the ICE-HPS, highlighting that the e-HPS can provide significant environmental benefits in an urban context.


2021 ◽  
Vol 12 (2) ◽  
pp. 79
Author(s):  
Angela Sanguinetti ◽  
Kenneth Kurani

Electrification of transportation network companies (TNCs), such as Uber and Lyft, can produce social and environmental benefits from reduced vehicle emissions and enhanced implementation of renewable electricity as well as private benefits to drivers via reduced vehicle fuel and maintenance costs compared to conventional vehicles. We conducted a survey of plug-in electric vehicle (PEV) drivers on the Uber platform in the US. This paper describes these drivers and their experiences to further understanding of motivations for and barriers to PEV adoption among TNC drivers. The TNC-PEV drivers in this sample clearly recognized, and were largely motivated by, economic benefits of fuel and maintenance savings, thus, increased net earnings, associated with using a PEV to provide ride-hailing services rather than a conventional internal combustion engine vehicle. Most drivers reported charging their PEV every day, most often at home and overnight. This is true even of those with plug-in hybrid electric vehicles (PHEVs) that can run on gas if not charged. Increased electric driving range topped the list of drivers’ wishes to better support PEVs on TNCs, and range limitations topped the list of reasons why PHEV drivers did not opt for a battery electric vehicle (BEV; that runs exclusively on electricity). The second most common wish among all PEV drivers was for more charger locations.


Author(s):  
Andrea Luigi Facci ◽  
Luca Andreassi ◽  
Fabrizio Martini ◽  
Stefano Ubertini

An effective methodology to determine the optimal operational strategy for a complex CHCP plant is presented. The model is based on the minimization of a chosen variable and it is organically developed integrating thermodynamics and economics. The graph-based optimization algorithm is developed in order to find the optimal set-points of the energy system components in a sufficiently short-time. By this way the model is applicable to real industrial problems, especially when the energy is sold to the electricity market. The problem in study is discretized in time and plant states, represented as weighted graph, and the strategy that minimizes the total cost is determined using backward dynamic programming. The proposed methodology has been applied to the optimization of the set-point of an internal combustion engine based plant used to satisfy an hospital energy load, under different seasonal load conditions (winter, summer and transitional seasons) and energy prices. Two different optimization criteria are considered, namely economical optimization and primary energy consumption minimization. It is then demonstrated that the model can be effectively applied to analyze the cost and profit in energy conversion in power plants, related to electricity price, fuel price, running of turbine and auxiliary equipment, service power consumption. In particular, the chosen test case demonstrates not only the model reliability but also the economical and thermodynamic convenience of using the model itself to optimize the plant.


2015 ◽  
Vol 23 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Junwon Choi ◽  
Rin Yun

Thermal efficiencies of Combined Heat and Power (CHP) and Tri-generation system, which are installed in a residential district and a general hospital, respectively, are investigated by using RETScreen. Economic feasibility and amount of CO 2 reduction are also estimated by comparing them with separate energy system, which separately supplies electricity, heating and cooling energy to consumer. When power generation capacity of the CHP system is changed from 26 to 40 MW, the efficiency is the highest at 26 MW. It is found that equity payback period is 5.7 years. Power generation capacity of the Tri-generation system for a general hospital was estimated to be 3.2 MW. Depending on the insulation amount of the building, profits and operating efficiency of the Tri-generation system are significantly changed. As an operating strategy, the type of following electricity load shows the highest thermal efficiency of 86%. When cost of electricity is raised by 10% and 20% of the present price, simple payback period is reduced from 5.2 years to 3.0 and 2.1 years, respectively.


Sign in / Sign up

Export Citation Format

Share Document