scholarly journals Biomethane use for automobiles towards a CO2-neutral energy system

Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 124-140
Author(s):  
Fabio Orecchini ◽  
Adriano Santiangeli ◽  
Fabrizio Zuccari

Abstract To pursue the goal of sustainable mobility, two main paths can be considered: the electrification of vehicles and the use of biofuels, replacing fossil fuels, in internal combustion engine (ICE) vehicles. This paper proposes an analysis of different possible scenarios for automobiles towards a CO2-neutral energy system, in the path of the use of biofuels and the production, distribution and use of biomethane. The study, an update of work presented previously, focuses on different scenarios that take into account numerous parameters that affect the overall efficiency of the production-and-use process. A Well-to-Wheel analysis is used to estimate the primary energy savings and reduction in greenhouse-gas emissions compared both to the use of fossil-based methane and to other fuels and automotive technologies. In particular, the study shows that the Non-Renewable Primary Energy Consumption (NRPEC) for biomethane is slightly higher (+9%) than that of biodiesel, but significantly lower than those of all the other power trains analysed: –69% compared to the battery electric vehicle (BEV) and –55% compared to bioethanol. Compared to the use of fossil natural gas, the NRPEC is reduced to just over a third (2.81). With regard to CO2 emissions, biomethane has the lowest values: –69% compared to BEV, –176% compared to bioethanol and –124% with respect to biodiesel. Compared to the use of fossil natural gas, the CO2 emissions are reduced over a third (3.55). Moreover, the paper shows that biomethane can completely cover the consumption of fossil methane for vehicles in Italy, proposing two different hypotheses: maximum production and minimum production. It is evident, therefore, that biomethane production can completely cover the consumption of fossil methane for vehicles: this means that the use of biomethane in the car can lead to a reduction in NRPEC equal to 28.9 × 106 GJ/year and a reduction of CO2 emissions equal to 1.9 × 106 t/year.

Author(s):  
Hongguang Jin ◽  
Wei Han ◽  
Lin Gao

A new kind of multi functional energy system (MES) with multi fossil fuels and multi products is proposed in this paper. This new system consumes coal and natural gas as fuel simultaneously, and co-generates methanol and power. Coal and natural gas are utilized synthetically based on the method of dual-fuel reforming, which integrates the methane/steam reforming and the combustion of coal. During the dual-fuel reforming the coal is indirectly transformed into clean syngas only by being burnt without pure oxygen. The new system combines the process of chemical and power generation, along with integration of thermal energy and material. In this manner, the energy including both chemical energy of fuel and thermal energy can be used more effectively from the view point of the operation of the whole system. As a result, the total exergy efficiency of this new system was about 60–66%. Compared with the conventional systems, the new system provides an energy savings of about 8–14%. The results obtained here indicate that this new system may provide a new way to utilize coal and natural gas more efficiently and economically.


2020 ◽  
Vol 35 (4) ◽  
pp. 93-101
Author(s):  
Ivan Smajla ◽  
Romana Crneković ◽  
Daria Karasalihović Sedlar ◽  
Filip Božić

This paper analyzes the possible role of liquefied natural gas (LNG) in the region in reducing carbon dioxide (CO2) emissions by replacing a certain part of solid fossil fuels. Increasing natural gas consumption, declining North Sea natural gas reserves and increased natural gas production costs in Europe combined have created new opportunities for LNG in Europe. The Energy Strategy of Croatia is focused on intensifying the transit position for natural gas that could establish Croatia as a primary LNG market for countries from the region, which shows that the Energy Strategy supports LNG. Concerning LNG’s introduction into the regional gas market, this paper analyses the possibility of establishing a regional gas hub. The region in this paper includes the following countries: Croatia, Serbia, Bosnia and Herzegovina, Hungary, Slovenia, and North Macedonia. On the other hand, the observed markets are not organized and sufficiently liquid, which is a crucial precondition for hub establishment. In order to decrease the region’s dependence on pipeline natural gas, it is necessary to construct gas interconnections between Croatia – Serbia, Croatia – Bosnia and Herzegovina and Serbia – North Macedonia. With the mentioned interconnections, the region could achieve greater security of natural gas supply. This paper discusses the possibility of utilizing the full capacity of a LNG terminal as a source of natural gas supply for the purpose of replacing solid fossil fuels in the region’s primary energy consumption. By replacing solid fossil fuels with natural gas, it is possible to achieve significant savings on CO2 emissions, which contributes towards a green and sustainable future.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3640
Author(s):  
Davide Borelli ◽  
Francesco Devia ◽  
Corrado Schenone ◽  
Federico Silenzi ◽  
Luca A. Tagliafico

Liquefied Natural Gas (LNG) is a crucial resource to reduce the environmental impact of fossil-fueled vehicles, especially with regards to maritime transport, where LNG is increasingly used for ship bunkering. The present paper gives insights on how the installation of LNG tanks inside harbors can be capitalized to increase the energy efficiency of port cities and reduce GHG emissions. To this purpose, a novel integrated energy system is introduced. The Boil Off Gas (BOG) from LNG tanks is exploited in a combined plant, where heat and power are produced by a regenerated gas turbine cycle; at the same time, cold exergy from LNG regasification contributes to an increase in the efficiency of a vapor compression refrigeration cycle. In the paper, the integrated energy system is simulated by means of dynamic modeling under daily variable working conditions. Results confirm that the model is stable and able to determine the time behavior of the integrated plant. Energy saving is evaluated, and daily trends of key thermophysical parameters are reported and discussed. The analysis of thermal recovering from the flue gases shows that it is possible to recover a large energy share from the turbine exhausts. Hence, the system can generate electricity for port cold ironing and, through a secondary brine loop, cold exergy for a refrigeration plant. Overall, the proposed solution allows primary energy savings up to 22% when compared with equivalent standard technologies with the same final user needs. The exploitation of an LNG regasification process through smart integration of energy systems and implementation of efficient energy grids can contribute to greener energy management in harbors.


2005 ◽  
Vol 9 (3) ◽  
pp. 7-14 ◽  
Author(s):  
Hiromi Yamamoto ◽  
Kenji Yamaji

The uses of fossil fuels cause not only the resources exhaustion but also the environmental problems such as global warming. The purposes of this study are to evaluate paths to ward sustainable energy systems and roles of each renewable. In order to realize the purposes, the authors developed the global land use and energy model that figured the global energy supply systems in the future considering the cost minimization. Using the model the authors conducted a simulation in C30R scenario, which is a kind of strict CO2 emission limit scenarios and reduced CO2 emissions by 30% compared with Kyoto protocol forever scenario, and obtained the following results. In C30R scenario bio energy will supply 33% of all the primary energy consumption. How ever, wind and photo voltaic will supply 1.8% and 1.4% of all the primary energy consumption, respectively, because of the limits of power grid stability. The results imply that the strict limits of CO2 emissions are not sufficient to achieve the complete renewable energy systems. In order to use wind and photo voltaic as major energy resources we need not only to reduce the plant costs but also to develop unconventional renewable technologies. .


Author(s):  
Michael B. McElroy

As discussed in Chapter 3, the transportation sector accounts for approximately a third of total emissions of CO2 in the United States, with a smaller fraction but a rapidly growing total in China. Combustion of oil, either as gasoline or diesel, is primarily responsible for the transportation- related emissions of both countries. Strategies to curtail overall emissions of CO2 must include plans for a major reduction in the use of oil in the transportation sector. This could be accomplished (1) by reducing demand for trans¬portation services; (2) by increasing the energy efficiency of the sector; or (3) by transitioning to an energy system less reliant on carbon- emitting sources of energy. Assuming continuing growth in the economies of both countries, option 1 is unlikely, certainly for China. Significant success has been achieved already in the United States under option 2, prompted by the application of increasingly more stringent corporate average fuel economy (CAFE) standards. And the technological advances achieved under this program are likely to find application in China and elsewhere, given the global nature of the automobile/ truck industry. The topic for discussion in this chapter is whether switching from oil to a plant- or animal- based fuel could contribute to a significant reduction in CO2 emissions from the transportation sector of either or both countries, indeed from the globe as a whole. The question is whether plant- based ethanol can substitute for gasoline and whether additional plant- and animal- derived products can cut back on demand for diesel. The related issue is whether this substitution can contribute at acceptable social and economic cost to a net reduction in overall CO2 emissions when account is taken of the entire lifecycle for production of the nonfossil alternatives. There is an extensive history to the use of ethanol as a motor fuel. Nicolas Otto, cred¬ited with the development of the internal combustion engine, used ethanol as the energy source for one of his early vehicle inventions in 1860. Henry Ford designed his first auto¬mobile, the quadricycle, to run on pure ethanol in 1896.


2016 ◽  
Vol 5 (3) ◽  
pp. 51-67
Author(s):  
Mohammad Mehdi Ghiasi ◽  
Alireza Aslani ◽  
Younes Noorollahi

The energy demand has increased dramatically in the recent decades. Due to the limitations and environmental effects of fossil fuels, secure level of energy supply is vital for economic and social development. This work is to review the energy sector in South Africa. After that, the consumptions of coal, oil, natural gas, and nuclear energy are estimated by employing simple exponential smoothing methodology. Finding shows that the primary energy consumption in the South Africa is correlated as a function of population growth rate, industrial growth rate, and GDP.


Author(s):  
Xenophon K. Kakatsios

As we enter the new century, new fuels may be required for both stationary power and transportation to ameliorate the triple threats of local air pollution, global climate change and dependence on unstable nations for imported oil. Shifting away from fossil fuels may be essential within decades if citizens in the developing world achieve even a significant fraction of the per capita energy consumption enjoyed by the industrial nations. Business-as-usual or evolutionary shifts in energy consumption patterns may not be adequate. New paradigms and new energy initiatives may be required to protect the environment while providing the energy services we have come to expect. Hydrogen could play a significant role as a clean energy carrier in the future for both stationary and transportation markets. Produced from renewable energy or nuclear power, hydrogen could become the backbone of a truly sustainable energy future – an energy system that consumes no non-renewable resources and creates no pollution or greenhouse gases of any type during operation. However, to achieve this potential, hydrogen must overcome serious economic, technological and safety perception barriers before it can displace fossil fuels as the primary energy carrier throughout the world. In this paper we explore the current status of hydrogen and fuel cell systems compared to other fuel options for reducing pollution, greenhouse gas emissions and suggest the introduction of hydrogen into the energy economy.


Author(s):  
T. M. I. Mahlia ◽  
M. Husnawan ◽  
H. H. Masjuki ◽  
L. Remuslara ◽  
R. Saidur

Vehicles energy consumption produces several emissions such as carbon dioxide (CO2), nitrogen oxide (NOx) and noise. This paper attempts to evaluate potential reduction in oil consumption and CO2 emissions if the obese and overweight conditions were eliminated from the adult population through the use of walking or cycling for transportation, and if individuals between the ages of 10 and 64 adopted recommended levels of daily exercise by walking or cycling instead of driving. Substantial co-benefits accompany widespread adoption of physical activity. The results found that the reductions in emissions from substituting driving with walking and cycling are significant enough to show a possible improvement of air quality. The highest reduction of CO2 emissions comes from the substitution of driving with exercising by cycling for 7 hours a week, which amounts to 2.38 Tg (Teragram) of reduction.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 745 ◽  
Author(s):  
Daniele Testi ◽  
Paolo Conti ◽  
Eva Schito ◽  
Luca Urbanucci ◽  
Francesco D’Ettorre

Micro-district heating networks based on cogeneration plants and renewable energy technologies are considered efficient, viable and environmentally-friendly solutions to realizing smart multi-energy microgrids. Nonetheless, the energy production from renewable sources is intermittent and stochastic, and cogeneration units are characterized by fixed power-to-heat ratios, which are incompatible with fluctuating thermal and electric demands. These drawbacks can be partially overcome by smart operational controls that are capable of maximizing the energy system performance. Moreover, electrically driven heat pumps may add flexibility to the system, by shifting thermal loads into electric loads. In this paper, a novel configuration for smart multi-energy microgrids, which combines centralized and distributed energy units is proposed. A centralized cogeneration system, consisting of an internal combustion engine is connected to a micro-district heating network. Distributed electric heat pumps assist the thermal production at the building level, giving operational flexibility to the system and supporting the integration of renewable energy technologies, i.e., wind turbines, photovoltaic panels, and solar thermal collectors. The proposed configuration was tested in a hypothetical case study, namely, a University Campus located in Trieste, Italy. The system operation is based on a cost-optimal control strategy and the effect of the size of the cogeneration unit and heat pumps was investigated. A comparison with a conventional configuration, without distributed heat pumps, was also performed. The results show that the proposed configuration outperformed the conventional one, leading to a total-cost saving of around 8%, a carbon emission reduction of 11%, and a primary energy saving of 8%.


Sign in / Sign up

Export Citation Format

Share Document