scholarly journals Novel Mathematical Method to Obtain the Optimum Speed and Fuel Reduction in Heavy Diesel Trucks

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8121
Author(s):  
Maria Torres-Falcon ◽  
Omar Rodríguez-Abreo ◽  
Francisco Antonio Castillo-Velásquez ◽  
Alejandro Flores-Rangel ◽  
Juvenal Rodríguez-Reséndiz ◽  
...  

In Mexico and many parts of the world, land cargo transport units (UTTC) operate at high speeds, causing accidents, increased fuel costs, and high levels of polluting emissions in the atmosphere. The speed in road driving, by the carriers, has been a factor little studied; however, it causes serious damage. This problem is reflected in accidents, road damage, low efficiency in the life of the engine and tires, low fuel efficiency, and high polluting emissions, among others. The official Mexican standard NOM-012-SCT-2-2017 on the weight and maximum dimensions with which motor transport vehicles can circulate, which travel through the general communication routes of the federal jurisdiction, establishes the speed limit at the one to be driven by an operator. Because of the new reality, the uses and customs of truck operators have been affected, mainly in their operating expenses. In this work, a mathematical model is presented with which the optimum driving speed of a UTTC is obtained. The speed is obtained employing the equality between the forces required to move the motor unit and the force that the tractor has available. The required forces considered are the force on the slope, the aerodynamic force, and the friction force, and the force available was considered the engine torque. This mathematical method was tested in seven routes in Mexico, obtaining significant savings of fuel above 10%. However, the best performance route possesses 65% flat terrain and 35% hillocks without mountainous terrain, regular type of highway, and a load of 20,000 kg, where the savings increase up to 16.44%.

2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


Author(s):  
Tu Renwei ◽  
Zhu Zhongjie ◽  
Bai Yongqiang ◽  
Gao Ming ◽  
Ge Zhifeng

Unmanned Aerial Vehicle (UAV) inspection has become one of main methods for current transmission line inspection, but there are still some shortcomings such as slow detection speed, low efficiency, and inability for low light environment. To address these issues, this paper proposes a deep learning detection model based on You Only Look Once (YOLO) v3. On the one hand, the neural network structure is simplified, that is the three feature maps of YOLO v3 are pruned into two to meet specific detection requirements. Meanwhile, the K-means++ clustering method is used to calculate the anchor value of the data set to improve the detection accuracy. On the other hand, 1000 sets of power tower and insulator data sets are collected, which are inverted and scaled to expand the data set, and are fully optimized by adding different illumination and viewing angles. The experimental results show that this model using improved YOLO v3 can effectively improve the detection accuracy by 6.0%, flops by 8.4%, and the detection speed by about 6.0%.


Type la natural diamonds have been heated in the temperature range of 2400-2700°C under stabilizing pressures. The specimens studied are mainly regular type IaB diamonds. Transmission electron microscopy studies of treated speci­mens show that platelets are converted to interstitial ½ a 0 <011> dislocation loops; voidites are also formed. When all the platelets have been converted, the ex­perimental features associated with them also disappear, i. e. the X-ray extra reflections (spikes), the B' local-mode absorption and the lattice absorption in the one-phonon region termed the D spectrum. It is discovered that when diamonds are heated under graphite-stable rather than diamond-stable conditions, the rate of conversion is considerably enhanced; for instance, at 2650°C there is an increase in the rate of about three orders of magnitude. This enhancement is considered to be due to the instability of the diamond structure itself and a reason for this enhancement is suggested.


2021 ◽  
Vol 245 ◽  
pp. 01010
Author(s):  
Zheng Fang ◽  
Zhuoer Wang ◽  
Lan Wei ◽  
Zhengkang Zhou

This project aims at the problems of low efficiency and large emission of LNG energy and other fossil energy. Combined with existing basic hydrogen fuel cell technology and solar power generation technology, a set of ship power management system based on hydrogen fuel cell is designed. Combined with solar energy technology, it effectively improves fuel efficiency and greatly reduces greenhouse gas emissions.


Author(s):  
Nicolò Cavina ◽  
Fabrizio Ponti

Abstract The paper presents the development of a methodology for evaluating the torque non-uniformity between the various cylinders of an Internal Combustion Engine (ICE). This non-uniformity can be due, for example, to pathological operating conditions such as misfires or misfuels, as well as to other abnormal operating conditions. Between the nominal torque production and the one corresponding to the absence of combustion there exist, in fact, a series of possible intermediate conditions. Each of them corresponds to a value of produced torque that lies between the nominal value and the one corresponding to the lack of combustion (due for example to statistical dispersion in manufacturing or aging in the injection system). The diagnosis of this type of non-uniformity is a very important issue in today’s engine control strategies design. The use of the developed methodology should in fact allow the control strategy to adopt the appropriate interventions if the diagnosed non-uniformity is related to different behavior of the injectors. In order to evaluate this torque production variability between the various cylinders, information hidden in the instantaneous crankshaft speed fluctuations has been processed using a suitable methodology. The procedure has been validated running a supercharged 2.0 liters V6 engine, and a 1.2 liters L4 engine, in a test cell. During the tests, the in-cylinder pressure signal has been acquired together with the instantaneous engine speed, in order to determine a correlation between speed fluctuations and the indicated torque produced by each cylinder. The actual cylinder by cylinder torque non-uniformity can then be evaluated on-board by processing engine speed. The procedure is able to diagnose the absence of combustion (due for example to a misfire or a misfuel) as well as abnormal combustions that do not necessarily involve lack of combustion, with the accuracy needed for on-board use. Control interventions to injection and ignition time commands of one or more cylinders should in most cases be able to re-establish torque production uniformity.


Author(s):  
R. D. Maugham ◽  
N. D. Vaughan ◽  
C. J. Brace ◽  
S. W. Murray

Abstract A continuously variable transmission (CVT) allows a powertrain controller the freedom to develop a required output power at a range of engine torque and speed conditions. This flexibility can be used to maximise fuel efficiency. Due to low frictional and pumping losses a gasoline engine’s fuel efficiency is maximised at low speed, high torque conditions. However due to the reduced torque margin available, controlling a gasoline engine in this region compromises transient vehicle response. Dilution torque control, using EGR or lean burn, has the potential to maintain the economy gains available using a CVT powertrain whilst improving a vehicle’s driveability. This paper introduces preliminary work that has been undertaken to investigate the potential of charge dilution to control steady state engine torque. A test rig has been developed based around an engine fitted with variable cam phasing and an external EGR system. The paper contains a discussion of initial results of a lean dilution test program used to demonstrate the principle.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2114
Author(s):  
Jerzy Sawicki ◽  
Paweł Wielgat ◽  
Piotr Zima

A circulating tank is a very useful theoretical scheme for many fluid-flow objects in several branches of engineering. The motion of the fluid in such objects can be induced in different ways. A stream pump provides an especially interesting possibility; however, the quantitative description of such devices shows some shortcomings. Such a device is analogous to a jet pump, thus has similar advantages (simplicity of construction, lack of movable elements, insensibility to pollutants) and disadvantages (low efficiency). On the one hand, from the technical viewpoint, one can make use of technical instructions presented in handbooks and offered by producers, and on the other hand by performing calculations using CFD tools. In this situation, it is self-evident that some intermediary method of design, i.e., formally simple, but physically convincing, would be welcome both by theoreticians and by engineers. Such a method is proposed in this paper and takes the form of an algebraic formula, combining the discharge of the stream pump and the discharge of the circulation induced by this stream. This expression, based on the balance between the power of the stream and the power of dissipation, has been experimentally verified with a positive result.


2003 ◽  
Vol 125 (4) ◽  
pp. 1050-1058 ◽  
Author(s):  
N. Cavina ◽  
F. Ponti

The paper presents the development of a methodology for evaluating the torque nonuniformity between the various cylinders of an internal combustion engine (ICE). This nonuniformity can be due, for example, to pathological operating conditions such as misfires or misfuels, as well as to other abnormal operating conditions. Between the nominal torque production and the one corresponding to the absence of combustion there exist, in fact, a series of possible intermediate conditions. Each of them corresponds to a value of produced torque that lies between the nominal value and the one corresponding to the lack of combustion (due for example to statistical dispersion in manufacturing or aging in the injection system). The diagnosis of this type of nonuniformity is a very important issue in today’s engine control strategies design. The use of the developed methodology should in fact allow the control strategy to adopt the appropriate interventions if the diagnosed nonuniformity is related to different behavior of the injectors. In order to evaluate this torque production variability between the various cylinders, information hidden in the instantaneous crankshaft speed fluctuations has been processed using a suitable methodology. The procedure has been validated running a supercharged 2.0 liters V6 engine, and a 1.2 liters L4 engine, in a test cell. During the tests, the in-cylinder pressure signal has been acquired together with the instantaneous engine speed, in order to determine a correlation between speed fluctuations and the indicated torque produced by each cylinder. The actual cylinder-by-cylinder torque nonuniformity can then be evaluated on-board by processing engine speed. The procedure is able to diagnose the absence of combustion (due for example to a misfire or a misfuel) as well as abnormal combustions that do not necessarily involve lack of combustion, with, the accuracy needed for on-board use. Control interventions to injection and ignition time commands of one or more cylinders should, in most cases, be able to re-establish torque production uniformity.


2018 ◽  
Vol 225 ◽  
pp. 05008
Author(s):  
Pogganeswaran Gurusingam ◽  
Firas Basim Ismail ◽  
Taneshwaren Sundaram

As electric demand increasing due to rapid economic growth, most developing country are sourcing for cheap fuel and low maintenance power plant which coal fired power plant become the more preferable plant. The cheap and abundant coal resources have played a major factor for coal power plant selection compare to other type of power plant. Although this plant type has low maintenance and operating cost but its emission of by product has a great effect on daily plant operation and environment. The one of the major emission was unburned carbon which by product of incomplete combustion where remaining of coal that unburned exits the furnaces with ash. Presence of higher percentage of unburned carbon indicates the low efficiency of furnace combustion and this directly affects financial status of the power plant operators. This condition causes severe damages on the boiler tube by formation of slagging and clinkering which reduces heat transfer and efficiency of the furnace. Current method proved to be more time consuming and plant operator facing difficulty to reduce unburned carbon in real time. As a solution for this problem, a best parameter was predicted to achieve low percentage of unburned carbon.


2018 ◽  
Vol 25 (3) ◽  
pp. 427-439
Author(s):  
Arezki Kheloufi

AbstractThis paper is devoted to the analysis of the boundary value problem {\partial_{t}u-\Delta u=f}, with an N-dimensional space variable, subject to a Dirichlet–Robin type boundary condition on the lateral boundary of the domain. The problem is settled in a noncylindrical domain of the form Q=\{(t,x_{1})\in\mathbb{R}^{2}:0<t<T,\varphi_{1}(t)<x_{1}<\varphi_{2}(t)\}% \times\prod_{i=1}^{N-1}{]0,b_{i}[}, where {\varphi_{1}} and {\varphi_{2}} are smooth functions. One of the main issues of the paper is that the domain can possibly be non-regular; for instance, the significant case when {\varphi_{1}(0)=\varphi_{2}(0)} is allowed. We prove well-posedness results for the problem in a number of different settings and under natural assumptions on the coefficients and on the geometrical properties of the domain. This work is an extension of the one-dimensional case studied in [4].


Sign in / Sign up

Export Citation Format

Share Document