scholarly journals An Experimental Study on Transient Response of a Hybrid Thermoelectric–Photovoltaic System with Beam Splitter

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8129
Author(s):  
Sajjad Mahmoudinezhad ◽  
Petru Adrian Cotfas ◽  
Daniel Tudor Cotfas ◽  
Enok Johannes Haahr Skjølstrup ◽  
Kjeld Pedersen ◽  
...  

In the current study, the electrical responses of a thermoelectric (TE) module and a photovoltaic (PV) cell are investigated in three different systems, namely, a PV-only system, TE-only system, and hybrid TE-PV system with a beam splitter (TE-PV-BS), under variable solar irradiations demonstrating partly cloudy weather conditions. To enhance the deployment of solar energy, a predesigned beam splitter combined with the amorphous silicon TE and PV system is used in the experiments. The impact of the spectral beam splitting technology on the conversion performance of the TE module and PV cell in the hybrid system is studied and compared to the performance of the TE-only and PV-only systems. The electrical output parameters of the TE module and PV cell are obtained for the studied systems, and they are discussed in detail. The results of this work show that the power generated by the PV cell has a stepwise fluctuation similar to the variation in the concentrated solar radiation. Affected by its heat capacity, the power variation is monotonous with the TE module. The results moreover indicate that there is more power generated by the PV cell in the TE-PV-BS hybrid system than by the PV-only system. In comparison, the TE-only system produces more power than the TE module in the hybrid system. Furthermore, the TE-PV-BS hybrid system generates higher and more stable electrical power than the TE-only and PV-only systems, showing a significant advantage of the spectrum management concept.

Author(s):  
G Vaddikasulu , Meneni Saigeetha

Maximum power point techniques (MPPT) are used in photovoltaic system to make full utilization of PV array output power. The output power of PV array is always changing with weather conditions i.e., solar irradiation and atmospheric temperature. PV cell generates power by converting sunlight into electricity. The electric power generated is proportional to solar radiation. PV cell can generate around 0.5 to 0.8 volts. During cloudy weather due to varying insolation levels the output of PV array varies. The MPPT is a process which tracks the maximum power from array and by increasing the duty cycle of the DC-DC boost converter, the output voltage of the system is increased. This paper presents the cuckoo mppt technique for PV system along with SMC controller methods in grid connected photovoltaic (PV) systems for optimizing the solar energy efficiency


Author(s):  
Mr. M Rupesh, Et. al.

This paper deals with the energy production of photovoltaic (PV) cells in different weather conditions. Today, photovoltaic generation plays an important role in generating electricity and satisfies the demand of the island's consumers. The power generation of the PV cell was completely dependent upon sunlight and temperature, but sunlight and temperature changed forever in nature. The many researchers are working on different MPPT technologies for a PV system. Conventional MPPT controllers cannot withstand a sudden change of weather conditions. The main aim of this article is to compare the various conventional and intelligent controller such as the GA, Fuzzy, KGMO, and CNFF for MPPT of the PV system. The proposed intelligent controller was developed and simulated by the MATLAB environment for MPPT in the PV system. In addition, the above results are evaluated and compared. Based on performance, the optimal smart controller has been recommended as MPPT of the PV system


2019 ◽  
Vol 63 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Michał Jasiński ◽  
Jacek Rezmer ◽  
Tomasz Sikorski ◽  
Jarosław Szymańda

The aim of the paper is to present possible using of monitoring systems associated with photovoltaic systems (PV) in point of its integration with electrical power system (EPS). Presented investigations is a case study of 15 kW Scientific Photovoltaic System. The paper contains a description of applied control and monitoring systems including monitoring of PV panels parameters, weather condition, PV DC/AC inverters as well as special monitoring systems dedicated to power quality (PQ) and shape of voltage and current. The aim of the paper is to exhibit a possibility to combine different monitoring systems of the PV in order to improve evaluation of integration of PV with EPS. Presented example contains selected elements of power quality assessment, power and energy production, weather conditions for selected period of PV system working time.


Author(s):  
Abayomi A. Adebiyi ◽  
Ian J. Lazarus ◽  
Akshay K. Saha ◽  
Evans E. Ojo

Model and simulation of the impact of the distribution grid-tied photovoltaic (PV) system feeding a variable load with its control system have been investigated in this study. Incremental Conductance (IncCond) algorithm based on maximum power point tracking (MPPT) was implemented for the PV system to extract maximum power under different weather conditions when solar irradiation varies between 250W/m2 and 1000W/m2. The proposed system is modelled and simulated with MATLAB/Simulink tools. Under different weather conditions, the dynamic performance of the PV system is evaluated. The results obtained show the efficacy of the proposed MPPT method in response to rapid daytime weather variations. The results also show that the surplus power generated is injected into the grid when the injected power from the PV system is higher than the load demand; otherwise, the grid supplies the load.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


2020 ◽  
Vol 186 ◽  
pp. 01004
Author(s):  
Pathomthat Chiradeja ◽  
Atthapol Ngaopitakkul

Renewable energy especially solar energy has become a significant part in electrical power generation with its advantage in the environmentally friendly and current trend of decrease in installation cost. The photovoltaic (PV) system on a rooftop is one of the power generating system based on renewable energy that can fit building to utilize space efficiently. This paper is analyzing the feasibility of installing a solar PV rooftop on the building using a case study building located in Bangkok, Thailand. The performance will be evaluated in term of both energy and economic perspective. The comparison with Thailand building energy code also been done to show that overall energy consumption with PV system complies with the law. The result has shown that with rooftop photovoltaic system installation, annual energy consumption in the building can be reduced significantly and it can achieve feasibility in term of economic perspective.


Author(s):  
Omar Mohammed Benaissa ◽  
Samir Hadjeri ◽  
Sid Ahmed Zidi

<span lang="EN-US">This paper describes the Grid connected solar photovoltaique system using DC-DC boost converter and the DC/AC inverter (VSC) to supplies electric power to the utility grid. The model contains a representation of the main components of the system that are two solar arrays of 100 kW, boost converter and the grid side inverter. The paper starts with a system description, in this part we have given a definition and a short overview of every component used in this system and they are taken separately. The PV cell model is easy, accurate, and takes external temperature and solar radiation into consideration. It also proposes a maximum power point tracking (MPPT) algorithm. The algorithm incorporated in a DC/DC converter is used to track the maximum power of PV cell. Finally, the DC/AC inverter (VSC) of three- level is used to regulate the ouput voltage of DC/DC converter and connects the PV cell to the grid. Simulation results show how a solar radiation’s change can affect the power output of any PV system, also they show the control performance and dynamic behavior of the grid connected photovoltaic system.</span>


Author(s):  
K. Agyenim-Boateng ◽  
R. F. Boehm

The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources’ transient behavior and the impact this would have on the operation of the grid. One way of addressing this is through the use of supplemental energy storage. While the technology for the latter has not been proven on a large scale or to be economical at the present time, some assessments of what magnitude is required can be made. In performing this work we have used NREL’s Solar Advisor Model (SAM 2010) with TMY3 solar data to estimate the photovoltaic system power generation. Climatic conditions close to load centers were chosen for the simulations. Then the PV output for varying sizes of arrays were examined and the impact of varying amounts of storage investigated. The storage was characterized by maximum limiting energy and power capacities based on annual hourly peak load, as well as its charging and discharging efficiencies. The simulations were performed using hourly time steps with energy withdrawn from, or input to, storage only after considering base generation and the PV system output in serving the grid load. In this work, we examined the load matching capability of solar PV generation (orientated for maximum summer output) for a sample Southwestern US utility grid load of 2008. Specifically we evaluated the daily and seasonal peak load shifting with employing varying storage capacities. The annual average energy penetration based on the usable solar PV output is also examined under these conditions and at different levels of system flexibility.


2012 ◽  
Vol 517 ◽  
pp. 791-796
Author(s):  
Cheng Yao Wang ◽  
Yin Xu ◽  
Yao Ming Zhang ◽  
Yong Ming Hua

In this paper, a concentrating photovoltaic (CPV) system with low ratio was successfully developed. In the design of CPV concentrator, a quasi-parabolic reflector was adopted. With the research of basic optical mechanisms, a mathematic model was built with the corresponding program. In addition, the width of light spot was analyzed with considering the symmetry of tracking errors and glass deformation in manufacture to identify reasonable values. The system was designed with a reflector of 10 flat mirrors, which has a geometrical concentration ratio of 8.18 and a flux concentration ratio of 5. The concentrating photovoltaic system was investigated experimentally under the various weather conditions. The output voltage profile and the output power of the flat PV system and the CPV system were presented to analyze the concentration ratio and the electric power. And the influence of soiling was also discussed. The results showed that the performance of tracking system was good in a clear day. Compared to the flat cell with the same system, the electric power was nearly increased by 4-5 times.


2013 ◽  
Vol 392 ◽  
pp. 563-567
Author(s):  
Yan Jie Dai ◽  
Chun Yan Sun ◽  
Xiao Yong Wang ◽  
Wei Hua Yang

Along with the continuous expansion of photovoltaic (PV) power generation, different capacity of grid connected PV system is gradually increased. China's first residential grid-connected PV system has interconnected successfully in QingDao and operated normally. This document analyzed electrical connected diagram of grid-connected PV system. Using power quality analyzer, the online power quality is monitored and analyzed. When PV power generation is low efficiency of operating state, harmonic current is over distortion limits. Monitoring data was simulated through electrical power standard source. To ensure power metering accuracy under harmonic, the watt-second method is proposed. Testing results show that smart electrical meter can meter accurately within 20 times harmonics.


Sign in / Sign up

Export Citation Format

Share Document