scholarly journals Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8410
Author(s):  
Matteo Formolli ◽  
Gabriele Lobaccaro ◽  
Jouri Kanters

Within the framework Solar Heating and Cooling Programme of the International Energy Agency Task 51 “Solar Energy in Urban Planning”, case studies from Norway, Sweden, and Denmark were collected and analyzed through a comparative approach. The cases were first classified based on their urban characterization (existing and new urban areas) and then compared within the same country or in a cross-country perspective according to three areas of interest (i.e., Scale and planning process, Legislation and planning process, Targets and goals). The comparisons follow a common template of five sections describing the role of the involved stakeholders and highlighting challenges, barriers, and opportunities for the deployment of active solar systems and passive solar strategies. Both technical and non-technical aspects are considered. Among the technical aspects, the focus is on the adoption of solar energy strategies (e.g., solar accessibility, daylighting), the estimation of solar potential and energy generation. Regarding the non-technical aspects, the focus is on identifying barriers and challenges for the adoption of solar systems in relation to national and local legislation. The findings show that municipalities can have a crucial role in facilitating the adoption of solar energy solutions in cities by embracing ambitious visions and storytelling, as well as being directly financially involved as owners or subsidizing bodies. The findings also demonstrate the value of the use of indicators to evaluate the performance of masterplans, the combination of analogue and digital tools in the design process, and the performance of solar simulations from early stages to foster awareness among the involved stakeholders. Despite these positives, the Scandinavian legislation on solar energy utilization in the urban context still displays fragilities, making the creation of guidelines a pressing need.

2018 ◽  
Vol 6 (8) ◽  
pp. 214-217
Author(s):  
Deepak Aryal

This paper reports analytical review results on the global and national importance of solar energy as a clean and renewable source of energy. Pre-monsoon and post monsoon seasons have higher mean monthly sunshine duration (about 8 hours/day) than summer (about 5 hours/day) and winter (about 7 hours/day) seasons in Kathmandu. The lowest sunshine duration during summer season is attributed to the effect of monsoonal clouds during that period. Pre-monsoon and monsoon seasons receive solar energy of about 250 W/m2 and 200 W/m2 respectively. The winter season receives the least amount of solar radiation (about 150 W/m2). Results show high prospect of solar energy utilization both in rural and urban areas of Nepal.


2020 ◽  
Vol 197 ◽  
pp. 02008
Author(s):  
Giacomo Cillari ◽  
Fabio Fantozzi ◽  
Alessandro Franco

Data from the International Energy Agency confirm that in a zero-energy perspective the integration of solar systems in buildings is essential. The development of passive solar strategies has suffered the lack of standard performance indicators and design guidelines. The aim of this paper is to provide a critical analysis of the main passive solar design strategies based on their classification, performance evaluation and selection methods, with a focus on integrability. Climate and latitude affect the amount of incident solar radiation and the heat losses, while integrability mainly depends on the building structure. For existing buildings, shading and direct systems represent the easiest and most effective passive strategies, while building orientation and shape are limited to new constructions: proper design can reduce building energy demand around 40%. Commercial buildings prefer direct use systems while massive ones with integrated heat storage are more suitable for family houses. A proper selection must consider the energy and economic balance of different building services involved: a multi-objective evaluation method represents the most valid tool to determine the overall performance of passive solar strategies.


2017 ◽  
Vol 21 (2) ◽  
pp. 15-24 ◽  
Author(s):  
Jan Barwicki ◽  
Maciej Kuboń ◽  
Andrzej Marczuk

AbstractPhotovoltaic systems are very efficient concerning proper utilization of solar radiation. However, the nanotechnology solution can replace the photovoltaic by the use of new production technology to lower the price of solar cells to one tenth. Sun provides nearly unlimited energy resource, but existing solar energy harvesting technologies are quite expensive and cannot compete with fossil fuels. The central part of Poland, which represents about 50 percent of the area, gives solar radiation at the level of 1000 kWh·m−2/year. Other new developments, which can help improve existing efficiency of solar systems are: diatoms utilization, artificial photosynthesis, nanoleaves and rotation solar towers.


2014 ◽  
Vol 3 (2) ◽  
pp. 467-473
Author(s):  
Henrik Zsiborács ◽  
Gábor Pintér ◽  
Béla Pályi

The energy is one of the most important needs of the humanity. One of its biggest challenge or danger is that the world's demand for energy continues to grow. The aim of present study is to review the introduction of solar energy utilization, the economic determination of the return of crystalline solar photovoltaic systems in Hungary, the electricity price reductions for individuals and the change in the payback period. The effect of the changing investment cost to the payback period based on the changes in electricity price reductions and in central bank interest rate is written in this study. An important question is for a household: decide by or against a solar (PV) system. The main direction of our recent research is the utilization of photovoltaic (PV) solar energy with crystalline solar systems. The research was carried out in solar-electric power plants extended from 1.5 kWp to 10 kWp. The calculation of payback time was performed by dynamic indices.


2008 ◽  
Vol 58 (3) ◽  
pp. 563-570 ◽  
Author(s):  
R. Törnqvist ◽  
A. Norström ◽  
E. Kärrman ◽  
P.-A. Malmqvist

There are billions of people around the world that lack access to safe water supply and basic sanitation, a situation which puts the affected in severe health conditions as well as economical and social despair. Many of those lacking adequate water supply and sanitation systems can be found at the fringe of the cities in so called peri-urban areas, especially in the developing world. Planning in these areas is highly complex due to challenging environmental and physical conditions, high population density and unclear institutional boundaries. This article presents a framework aiming to support the planning process for sustainable water and sanitation systems in peri-urban areas. The suggested framework is based on different available planning approaches from a review of literature and websites of organisations and companies. It consists of a recommendation of important steps in the planning process as well as supporting tools. Further, it incorporates a set of sustainability criteria important for the peri-urban context and allows for the development of site specific systems. The framework has the aim to be flexible for different planning situations, and for suiting planners with different perspectives and amount of resources.


1999 ◽  
Author(s):  
Curtis A. Palmer ◽  
Allan Kolker ◽  
Jason C. Willett ◽  
Stanley J. Mroczkowski ◽  
Robert B. Finkelman ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2308 ◽  
Author(s):  
Can Bıyık

The smart city transport concept is viewed as a future vision aiming to undertake investigations on the urban planning process and to construct policy-pathways for achieving future targets. Therefore, this paper sets out three visions for the year 2035 which bring about a radical change in the level of green transport systems (often called walking, cycling, and public transport) in Turkish urban areas. A participatory visioning technique was structured according to a three-stage technique: (i) Extensive online comprehensive survey, in which potential transport measures were researched for their relevance in promoting smart transport systems in future Turkish urban areas; (ii) semi-structured interviews, where transport strategy suggestions were developed in the context of the possible imaginary urban areas and their associated contextual description of the imaginary urban areas for each vision; (iii) participatory workshops, where an innovative method was developed to explore various creative future choices and alternatives. Overall, this paper indicates that the content of the future smart transport visions was reasonable, but such visions need a considerable degree of consensus and radical approaches for tackling them. The findings offer invaluable insights to researchers inquiring about the smart transport field, and policy-makers considering applying those into practice in their local urban areas.


Sign in / Sign up

Export Citation Format

Share Document