scholarly journals Cleaner Fuel Production via Co-Processing of Vacuum Gas Oil with Rapeseed Oil Using a Novel NiW/Acid-Modified Phonolite Catalyst

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8497
Author(s):  
Jakub Frątczak ◽  
Nikita Sharkov ◽  
Hector De Paz Carmona ◽  
Zdeněk Tišler ◽  
Jose M. Hidalgo-Herrador

Clean biofuels are a helpful tool to comply with strict emission standards. The co-processing approach seems to be a compromise solution, allowing the processing of partially bio-based feedstock by utilizing existing units, overcoming the need for high investment in new infrastructures. We performed a model co-processing experiment using vacuum gas oil (VGO) mixed with different contents (0%, 30%, 50%, 70%, 90%, and 100%) of rapeseed oil (RSO), utilizing a nickel–tungsten sulfide catalyst supported on acid-modified phonolite. The experiments were performed using a fixed-bed flow reactor at 420 °C, a hydrogen pressure of 18 MPa, and a weight hourly space velocity (WHSV) of 3 h−1. Surprisingly, the catalyst stayed active despite rising oxygen levels in the feedstock. In the liquid products, the raw diesel (180–360 °C) and jet fuel (120–290 °C) fraction concentrations increased together with increasing RSO share in the feedstock. The sulfur content was lower than 200 ppm for all the products collected using feedstocks with an RSO share of up to 50%. However, for all the products gained from the feedstock with an RSO share of ≥50%, the sulfur level was above the threshold of 200 ppm. The catalyst shifted its functionality from hydrodesulfurization to (hydro)decarboxylation when there was a higher ratio of RSO than VGO content in the feedstock, which seems to be confirmed by gas analysis where increased CO2 content was found after the change to feedstocks containing 50% or more RSO. According to the results, NiW/acid-modified phonolite is a suitable catalyst for the processing of feedstocks with high triglyceride content.

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1093
Author(s):  
Josef Blažek ◽  
Daria Toullis ◽  
Petr Straka ◽  
Martin Staš ◽  
Pavel Šimáček

This study describes the co-hydrotreating of mixtures of rapeseed oil (0–20 wt%) with a petroleum feedstock consisting of 90 wt% of straight run gas oil and 10 wt% of light cycle oil. The hydrotreating was carried out in a laboratory flow reactor using a sulfided NiMo/Al2O3 catalyst at a temperature of 345 °C, the pressure of 4.0 and 8.0 MPa, a weight hourly space velocity of 1.0 h−1 and hydrogen to feedstock ratio of 230 m3∙m−3. All the liquid products met the EU diesel fuel specifications for the sulfur content (<10 mg∙kg−1). The content of aromatics in the products was very low due to the high hydrogenation activity of the catalyst and the total conversion of the rapeseed oil into saturated hydrocarbons. The addition of a depressant did not affect the cold filter plugging point of the products. The larger content of n-C17 than n-C18 alkanes suggested that the hydrodecarboxylation and hydrodecarbonylation reactions were preferred over the hydrodeoxygenation of the rapeseed oil. The hydrogen consumption increased with increasing pressure and the hydrogen consumption for the rapeseed oil conversion was higher when compared to the hydrotreating of the petroleum feedstock.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 442
Author(s):  
Petr Straka ◽  
Josef Blažek ◽  
Daria Toullis ◽  
Tomáš Ihnát ◽  
Pavel Šimáček

This study compares the hydrotreating of the mixture of petroleum middle distillates and the same mixture containing 20 wt % of rapeseed oil. We also study the effect of the temperature and the weight hourly space velocity (WHSV) on the co-hydrotreating of gas oil and rapeseed oil mixture. The hydrotreating is performed over a commercial hydrotreating Ni-Mo/Al2O3 catalyst at temperatures of ca. 320, 330, 340, and 350 °C with a WHSV of 0.5, 1.0, 1.5, and 2.0 h−1 under a pressure of 4 MPa and at a constant hydrogen flow of 28 dm3·h−1. The total conversion of the rapeseed oil is achieved under all the tested reaction conditions. The content of the aromatic hydrocarbons in the products reached a minimum at the lowest reaction temperature and WHSV. The content of sulphur in the products did not exceed 10 mg∙kg−1 at the reaction temperature of 350 °C and a WHSV of 1.0 h−1 and WHSV of 0.5 h−1 regardless of the reaction temperature. Our results show that in the hydrotreating of the feedstock containing rapeseed oil, a large amount of hydrogen is consumed for the dearomatisation of the fossil part and the saturation of the double bonds in the rapeseed oil and its hydrodeoxygenation.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5497
Author(s):  
Olga Pleyer ◽  
Dan Vrtiška ◽  
Petr Straka ◽  
Aleš Vráblík ◽  
Jan Jenčík ◽  
...  

Catalytic hydrocracking represents an optimal process for both heavy petroleum fractions and Fischer–Tropsch (FT) wax upgrading because it offers high flexibility regarding the feedstock, reaction conditions and products’ quality. The hydrocracking of a heavy vacuum gas oil with FT wax was carried out in a continuous-flow catalytic unit with a fixed-bed reactor and a co-current flow of the feedstock and hydrogen at the reaction temperatures of 390, 400 and 410 °C and a pressure of 8 MPa. The increasing reaction temperature and content of the FT wax in the feedstock caused an increasing yield in the gaseous products and a decreasing yield in the liquid products. The utilisation of the higher reaction temperatures and feedstocks containing the FT wax showed a positive influence on the conversion of the fraction boiling above 400 °C to lighter fractions. Although the naphtha and middle distillate fractions obtained via atmospheric and vacuum distillations of the liquid products of hydrocracking did not comply with the particular quality standards of automotive gasolines and diesel fuels, the obtained products still present valuable materials which could be utilised within an oil refinery and in the petrochemical industry.


2013 ◽  
Vol 750-752 ◽  
pp. 1826-1830
Author(s):  
Qing Song Wang ◽  
Gong Li ◽  
Min Jian Huang ◽  
Shu Xi Zhou

Methanol dehydrogenation to formaldehyde was conducted in a fixed-bed flow reactor under the atmospheric pressure with sodium carbonate modified by metal oxides. The effects of catalyst composition, reaction temperature, weight hourly space velocity (WHSV) on the reaction were investigated. The catalysts were characterized by XRD, TG and nitrogen adsorption. The results indicated that ZnO/Na2CO3 containing 2wt% ZnO prepared by mechanical grinding method had higher catalytic activity for methanol dehydrogenation to formaldehyde. The conversion of methanol and the selectivity of formaldehyde were respectively 57.62% and 77.84% under the condition of wmethanol/wfeed =0.19, reaction temperature 650°C and WHSV (methanol) 7h-1.


1994 ◽  
Vol 16 (5) ◽  
pp. 187-193 ◽  
Author(s):  
R. Alcántara ◽  
L. Canoira ◽  
R. Conde ◽  
J. M. Fernández-Sánchez ◽  
A. Navarro

This paper describes the design and operation of a laboratory plant with a fixed-bed continuous-flow reactor, fully automated and controlled from a personal computer. The automated variables include two gas flows, one liquid flow, six temperatures, two pressures, one circulation of a cooling liquid, and 10 electrovalves. An adaptive-predictive control system was used. The chemical process chosen to run the automated reactor was the conversion of methanol to gasoline over a ZSM-5 catalyst. This is a highly exothermal process, so a cascade control system had to be used to control the reactor internal temperature. Pressure and weight hourly space velocity (WHSV) were fixed at 1 arm and 1.5h-1respectively. Accurate control (±0.2°C) of the reactor’s internal temperature was achieved and repeatability for the conversion of methanol to gasoline was good.


Author(s):  
Dilek Varisli ◽  
Tugba Rona

Abstract Ammonia has become an important source for hydrogen especially for fuel cell applications that require COx free hydrogen. In this study, high surface area Pt incorporated mesoporous siliceous materials were prepared for ammonia decomposition reaction to produce clean hydrogen. The results of a fixed bed flow reactor tests, conducted using pure ammonia showed that Pt-SiO2 type catalysts which were prepared by a one-pot hydrothermal synthesis procedure were very active in ammonia decomposition, such as 72% conversion was reached at 500°C at a gas hourly space velocity of 5,100 ml/h.gcat over the catalyst prepared at Pt/Si mol ratio of 0.03. Activity of the synthesized catalysts increased with an increase in Pt loading. Platinum incorporated siliceous materials prepared by impregnation procedures were also tested in ammonia decomposition and highly promising results were obtained.


ACS Omega ◽  
2020 ◽  
Vol 5 (27) ◽  
pp. 16595-16601 ◽  
Author(s):  
Davood Faraji ◽  
Samyar Zabihi ◽  
Mahdi Ghadiri ◽  
Sepehr Sadighi ◽  
Ali Taghvaie Nakhjiri ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 91 ◽  
Author(s):  
Gisele C. R. Silva ◽  
Dali Qian ◽  
Robert Pace ◽  
Olivier Heintz ◽  
Gilles Caboche ◽  
...  

Inexpensive Ni-based catalysts can afford comparable performance to costly precious metal formulations in the conversion of fat, oil, or greases (FOG) to fuel-like hydrocarbons via decarboxylation/decarbonylation (deCOx). While the addition of certain metals has been observed to promote Ni-based deCOx catalysts, the steady-state performance of bimetallic formulations must be ascertained using industrially relevant feeds and reaction conditions in order to make meaningful comparisons. In the present work, used cooking oil (UCO) was upgraded to renewable diesel via deCOx over Ni/Al2O3 promoted with Cu, Fe, or Pt in a fixed-bed reactor at 375 °C using a weight hourly space velocity (WHSV) of 1 h−1. Although all catalysts fully deoxygenated the feed to hydrocarbons throughout the entire 76 h duration of these experiments, the cracking activity (and the evolution thereof) was distinct for each formulation. Indeed, that of the Ni-Cu catalyst was low and relatively stable, that of the Ni-Fe formulation was initially high but progressively dropped to become negligible, and that of the Ni-Pt catalyst started as moderate, varied considerably, and finished high. Analysis of the spent catalysts suggests that the evolution of the cracking activity can be mainly ascribed to changes in the composition of the metal particles.


2014 ◽  
Vol 1025-1026 ◽  
pp. 782-786 ◽  
Author(s):  
Hua Song ◽  
Fu Yong Zhang ◽  
Zai Shun Jin ◽  
Huai Yuan Wang ◽  
Yan Ji Zhu ◽  
...  

Ni2P/TiO2-Al2O3catalysts were prepared by impregnation of nickel phosphate precursors followed by reduction in hydrogen. The catalysts were characterized by X-ray diffraction (XRD), N2-adsorption specific surface area measurements (BET), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetry differential thermal analysis (TG-DTA). The effects of reduction temperature on catalyst structure and HDS activity were studied using a lab-scale continuous flow fixed-bed reactor.. The results indicated that the catalyst prepared with reduction temperature of 973 K exhibited the best performance. At a reaction temperature of 606 K, a pressure of 3.0 MPa, a hydrogen/oil ratio of 500 (V/V), and a weight hourly space velocity (WHSV) of 2.0 h-1, the conversion of DBT HDS was 96.0%.


2017 ◽  
Vol 68 (7) ◽  
pp. 1442-1448
Author(s):  
Song Il Kong ◽  
Anca Borcea ◽  
Vasile Matei ◽  
Dragos Ciuparu

The gas-phase etherification reaction of ethanol with tert-butyl alcohol (TBA) was investigated for the production of an oxygenated fuel additive. The reaction was carried out in a continuous flow reactor, in the presence of 12-tungstophosphoric acid (HPW) dispersed on MCM-41 as catalyst. We have studied the influence of temperature, ethanol:TBA mole ratio, and weight hourly space velocity (WHSV) on the TBA conversion and ETBE selectivity. The optimum operating conditions were found at 110oC temperature, 8:1 ethanol:TBA mole ratio in the feed, and 30% HPW loading on the catalyst. The highest ETBE yield values were obtained at 110 �C and WHSV of 46 h-1 and 42 h-1. The HPW/MCM-41 catalyst showed good activity and on-stream stability for the gas-phase synthesis of ETBE at 110oC, thus it is a promising catalyst for etherification reactions and, potentially, for other gas phase acid-catalyzed reactions.


Sign in / Sign up

Export Citation Format

Share Document