scholarly journals The Effect of the Reaction Conditions on the Properties of Products from Co-hydrotreating of Rapeseed Oil and Petroleum Middle Distillates

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 442
Author(s):  
Petr Straka ◽  
Josef Blažek ◽  
Daria Toullis ◽  
Tomáš Ihnát ◽  
Pavel Šimáček

This study compares the hydrotreating of the mixture of petroleum middle distillates and the same mixture containing 20 wt % of rapeseed oil. We also study the effect of the temperature and the weight hourly space velocity (WHSV) on the co-hydrotreating of gas oil and rapeseed oil mixture. The hydrotreating is performed over a commercial hydrotreating Ni-Mo/Al2O3 catalyst at temperatures of ca. 320, 330, 340, and 350 °C with a WHSV of 0.5, 1.0, 1.5, and 2.0 h−1 under a pressure of 4 MPa and at a constant hydrogen flow of 28 dm3·h−1. The total conversion of the rapeseed oil is achieved under all the tested reaction conditions. The content of the aromatic hydrocarbons in the products reached a minimum at the lowest reaction temperature and WHSV. The content of sulphur in the products did not exceed 10 mg∙kg−1 at the reaction temperature of 350 °C and a WHSV of 1.0 h−1 and WHSV of 0.5 h−1 regardless of the reaction temperature. Our results show that in the hydrotreating of the feedstock containing rapeseed oil, a large amount of hydrogen is consumed for the dearomatisation of the fossil part and the saturation of the double bonds in the rapeseed oil and its hydrodeoxygenation.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8497
Author(s):  
Jakub Frątczak ◽  
Nikita Sharkov ◽  
Hector De Paz Carmona ◽  
Zdeněk Tišler ◽  
Jose M. Hidalgo-Herrador

Clean biofuels are a helpful tool to comply with strict emission standards. The co-processing approach seems to be a compromise solution, allowing the processing of partially bio-based feedstock by utilizing existing units, overcoming the need for high investment in new infrastructures. We performed a model co-processing experiment using vacuum gas oil (VGO) mixed with different contents (0%, 30%, 50%, 70%, 90%, and 100%) of rapeseed oil (RSO), utilizing a nickel–tungsten sulfide catalyst supported on acid-modified phonolite. The experiments were performed using a fixed-bed flow reactor at 420 °C, a hydrogen pressure of 18 MPa, and a weight hourly space velocity (WHSV) of 3 h−1. Surprisingly, the catalyst stayed active despite rising oxygen levels in the feedstock. In the liquid products, the raw diesel (180–360 °C) and jet fuel (120–290 °C) fraction concentrations increased together with increasing RSO share in the feedstock. The sulfur content was lower than 200 ppm for all the products collected using feedstocks with an RSO share of up to 50%. However, for all the products gained from the feedstock with an RSO share of ≥50%, the sulfur level was above the threshold of 200 ppm. The catalyst shifted its functionality from hydrodesulfurization to (hydro)decarboxylation when there was a higher ratio of RSO than VGO content in the feedstock, which seems to be confirmed by gas analysis where increased CO2 content was found after the change to feedstocks containing 50% or more RSO. According to the results, NiW/acid-modified phonolite is a suitable catalyst for the processing of feedstocks with high triglyceride content.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1093
Author(s):  
Josef Blažek ◽  
Daria Toullis ◽  
Petr Straka ◽  
Martin Staš ◽  
Pavel Šimáček

This study describes the co-hydrotreating of mixtures of rapeseed oil (0–20 wt%) with a petroleum feedstock consisting of 90 wt% of straight run gas oil and 10 wt% of light cycle oil. The hydrotreating was carried out in a laboratory flow reactor using a sulfided NiMo/Al2O3 catalyst at a temperature of 345 °C, the pressure of 4.0 and 8.0 MPa, a weight hourly space velocity of 1.0 h−1 and hydrogen to feedstock ratio of 230 m3∙m−3. All the liquid products met the EU diesel fuel specifications for the sulfur content (<10 mg∙kg−1). The content of aromatics in the products was very low due to the high hydrogenation activity of the catalyst and the total conversion of the rapeseed oil into saturated hydrocarbons. The addition of a depressant did not affect the cold filter plugging point of the products. The larger content of n-C17 than n-C18 alkanes suggested that the hydrodecarboxylation and hydrodecarbonylation reactions were preferred over the hydrodeoxygenation of the rapeseed oil. The hydrogen consumption increased with increasing pressure and the hydrogen consumption for the rapeseed oil conversion was higher when compared to the hydrotreating of the petroleum feedstock.


2017 ◽  
Vol 42 (1) ◽  
pp. 23-29
Author(s):  
Hua Song ◽  
Shengnan Li ◽  
Hualin Song ◽  
Feng Li ◽  
Huapeng Cui

A number of Zn–S2O82–/ZrO2–Al2O3 (Zn( x)–SZA) catalysts with different Zn mass fractions were synthesised and characterised by using X-ray diffraction, the Brunauer–Emmett–Teller method, and H2 temperature-programmed reduction. The structure and isomerisation performance of Zn( x)–SZA catalysts were studied using n-pentane as a probe reaction. The results showed that a pure tetragonal ZrO2 phase was formed on Zn( x)–SZA, and the ZrO2 crystallite sizes of the tetragonal phase increased in the order: Zn(0.5)–SZA < Zn(1.0)–SZA < Zn(1.5)–SZA < Zn(2.0)–SZA < SZA. Zn can strengthen the interaction between persulfate ions and the support, promote the formation of stronger acidity, lead to a better dispersion of sulfate ions on the surface, and improve the redox performance of the catalysts. The Zn(1.0)–SZA catalyst exhibited the best catalytic activity for n-pentane isomerisation. At a temperature of 170 °C, a reaction pressure of 2.0 MPa, a molar H2/ n-pentane ratio of 4:1, and a weight hourly space velocity of 1.0 h−1, the isopentane yield reached 58.0%.


2008 ◽  
Vol 73 (8-9) ◽  
pp. 983-999 ◽  
Author(s):  
Alla Spojakina ◽  
Květuše Jirátová ◽  
Václav Novák ◽  
Radostina Palcheva ◽  
Luděk Kaluža

CoMo/Al2O3 catalyst prepared by impregnation of alumina support with cobalt heteropolyoxomolybdate was tested in hydrodesulfurization (HDS) of thiophene, 1-benzothiophene, or light gas oil under various reaction conditions and reactor arrangements. Its physicochemical properties are also examined. The obtained data are compared with those of two industrial HDS catalysts.


2019 ◽  
Vol 44 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Yunwu Yu ◽  
Lianjie Liang ◽  
Changwei Xu ◽  
Yubo Dai ◽  
Wenhao Pan ◽  
...  

A series of ceria promoted Ni2P catalysts were prepared and evaluated in dibenzothiophene hydrodesulfurization steam. These catalysts were characterized by X-ray diffraction, N2 adsorption–desorption, CO chemisorptions, and X-ray photoelectron spectroscopy. The results showed that the addition of ceria into the bulk Ni2P catalyst was conducive to the formation of the Ni2P phase and contributed to a higher surface area, leading to a better dispersion and smaller crystallite size of Ni2P particles. The CexNi2P catalysts showed higher dibenzothiophene hydrodesulfurization activity than Ni2P catalyst and the Ce0.09Ni2P catalyst showed the highest dibenzothiophene hydrodesulfurization activity. The Ce0.09Ni2P catalyst showed a dibenzothiophene hydrodesulfurization conversion of 94.5% at the reaction conditions of 320°C, 4.0 MPa, a H2/oil ratio of 500 (V/V), and a weight hourly space velocity of 8.0 h−1. The dibenzothiophene was mainly transformed through desulfurization pathway.


Author(s):  
Tsuyoshi Maeda ◽  
Toshio Shinoki ◽  
Jiro Funaki ◽  
Katsuya Hirata

The authors reveal the dominant chemical reactions and the optimum conditions, supposing the design of ethanol steam-reforming reactors. Specifically speaking, experiments are conducted for Cu/ZnO/Al2O3 catalyst, together with those for Ru/Al2O3 catalyst for reference. Using a household-use-scale reactor with well-controlled temperature distributions, the authors compare experimental results with chemical-equilibrium theories. It has revealed by Shinoki et al. (2011) that the Cu/ZnO/Al2O3 catalyst shows rather high performance with high hydrogen concentration CH2 at low values of reaction temperature TR. Because, the Cu/ZnO/Al2O3 catalyst promotes the ethanol-steam-reforming and water-gas-shift reactions, but does not promote the methanation reaction. So, in the present study, the authors reveal that the Ru/Al2O3 catalyst needs high TR > 770 K for better performance than the Cu/ZnO/Al2O3 catalyst, and that the Ru/Al2O3 catalyst shows lower performance at TR < 770 K. Then, the Ru/Al2O3 catalyst is considered to activate all the three reactions even at low TR. Furthermore, concerning the Cu/ZnO/Al2O3 catalyst, the authors reveal the influences of liquid-hourly space velocity LHSV upon concentrations such as CH2, CCO2, CCO and CCH4 and the influence of LHSV upon the ethanol conversion XC2H5OH, in a range of LHSV from 0.05 h−1 to 0.8 h−1, at S/C = 3.0 and TR = 520 K. And, the authors reveal the influences of the thermal profile upon CH2, CCO2, CCO, CCH4 and XC2H5OH, for several LHSV’s. To conclude, with well-controlled temperatures, the reformed gas can be close to the theory. In addition, the authors investigate the influences of S/C.


2014 ◽  
Vol 1025-1026 ◽  
pp. 419-422
Author(s):  
Feng Li ◽  
Zai Shun Jin ◽  
Hua Lin Song ◽  
Yong Sheng Li ◽  
Jian Zhong Xu

Nickel phosphide Ni2P catalysts supported on TiO2-Al2O3support were prepared by co-impregnation. The catalysts were characterized by XRD, BET, and XPS. The effects of calcination temperature on catalyst structure and HDS activity were studied. The results indicated that the catalyst prepared with calcination temperature of 773 K exhibited the best performance. At a reaction temperature of 606 K, a pressure of 3.0 MPa, a hydrogen/oil ratio of 500 (V/V), and a weight hourly space velocity (WHSV) of 2.0 h-1, the conversion of DBT HDS was 96.0%.


2014 ◽  
Vol 953-954 ◽  
pp. 1053-1062 ◽  
Author(s):  
Yan Zhen Wang ◽  
Jing Tao Yan ◽  
Li Gao ◽  
Chun Min Song ◽  
Hong Ling Duan ◽  
...  

Batch-type base catalysis is currently the main process used for biodiesel production. Methods to reduce costs, improve capacity and decrease the emission of pollutants in the production of biodiesel are of great significance. This paper studied the reaction conditions for fatty acid methyl ester (FAME, referred to as biodiesel) production through the transesterification of soybean oil with methanol in the presence of Mg-Al hydrotalcite/γ-Al2O3as a fixed-bed catalyst. The influences of the methanol-oil ratio, space velocity, reaction temperature and pressure on product conversion were investigated. The results indicated that the optimum reaction conditions were as follows: methanol/oil ratio of 21:1, space velocity of 0.5 h-1, reaction temperature of 340°C, and reaction pressure of 2 MPa. Under these conditions, the one stage conversion rate was 80% and the lifetime of the catalyst was 220 h. The catalyst can process raw materials with high total acid numbers using two stages project.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1304
Author(s):  
Qiang Yuan ◽  
Jifeng Pang ◽  
Wenguang Yu ◽  
Mingyuan Zheng

A high-performance Pt catalyst supported on SBA-15 was developed for furfural decarbonylation. Compared to Pt catalysts loaded on microporous DeAl-Hbeta zeolite and hierarchical micro-mesoporous MFI nanosheet (NS) materials, the 1%Pt/SBA-15 catalyst afforded notably higher activity, furan selectivity and stability owing to the negligible acid sites and proper mesopores on the SBA-15 support. Among a set of 1%Pt/SBA-15 catalysts bearing Pt nanoparticles (NPs) with sizes of 2.4–4.3 nm, the catalyst with 3.7 nm Pt NPs afforded the highest furan selectivity. Over the optimal catalyst, 88.6% furan selectivity and ca. 90% furfural conversion were obtained at 573 K and a high weight hourly space velocity (WHSV) of 16.5 h−1. Moreover, the reaction temperatures at 440–573 K and the ratios of H2 to furfural at 0.79–9.44 did not affect the reaction selectivity notably, showing that the reaction over 1%Pt/SBA-15 can be conducted over a wide range of conditions. The catalyst was stable under the harsh reaction conditions and lasted for 90 h without significant deactivation, demonstrating the superior property of SBA-15 as a catalyst support for furfural decarbonylation.


2014 ◽  
Vol 983 ◽  
pp. 71-74
Author(s):  
Hua Song ◽  
Zi Dong Wang ◽  
Zai Shun Jin ◽  
Feng Li ◽  
Huai Yuan Wang ◽  
...  

nanonickel phosphide Ni2P catalysts supported on TiO2-Al2O3 support were prepared by impregnation. The catalysts were characterized by XRD, BET, and XPS. The effects of impregnation method,Ni2P loading on catalyst structure and HDS activity were studied. The results indicated that co-impregnation method is beneficial to the formation of Ni2P and can avoid the formation of Ni12P5. The catalyst prepared with co-impregnation method, Ni2P loading of 30% exhibited the best performance. At a reaction temperature of 606 K, a pressure of 3.0 MPa, a hydrogen/oil ratio of 500 (V/V), and a weight hourly space velocity (WHSV) of 2.0 h-1, the conversion of DBT HDS was 96.0%.


Sign in / Sign up

Export Citation Format

Share Document