scholarly journals Quantifying Environmental and Economic Impacts of Highly Porous Activated Carbon from Lignocellulosic Biomass for High-Performance Supercapacitors

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 351
Author(s):  
Yuxi Wang ◽  
Jingxin Wang ◽  
Xufeng Zhang ◽  
Debangsu Bhattacharyya ◽  
Edward M. Sabolsky

Activated carbons (AC) from lignocellulosic biomass feedstocks are used in a broad range of applications, especially for electrochemical devices such as supercapacitor electrodes. Limited studies of environmental and economic impacts for AC supercapacitor production have been conducted. Thus, this paper evaluated the environmental and economic impacts of AC produced from lignocellulosic biomass for energy-storage purposes. The life cycle assessment (LCA) was employed to quantify the potential environmental impacts associated with AC production via the proposed processes including feedstock establishment, harvest, transport, storage, and in-plant production. A techno-economic model was constructed to analyze the economic feasibility of AC production, which included the processes in the proposed technology, as well as the required facility installation and management. A base case, together with two alternative scenarios of KOH-reuse and steam processes for carbon activation, were evaluated for both environmental and economic impacts, while the uncertainty of the net present value (NPV) of the AC production was examined with seven economic indicators. Our results indicated that overall “in-plant production” process presented the highest environmental impacts. Normalized results of the life-cycle impact assessment showed that the AC production had environmental impacts mainly on the carcinogenics, ecotoxicity, and non-carcinogenics categories. We then further focused on life cycle analysis from raw biomass delivery to plant gate, the results showed that “feedstock establishment” had the most significant environmental impact, ranging from 50.3% to 85.2%. For an activated carbon plant producing 3000 kg AC per day in the base case, the capital cost would be USD 6.66 million, and annual operation cost was found to be USD 15.46 million. The required selling price (RSP) of AC was USD 16.79 per kg, with the discounted payback period (DPB) of 9.98 years. Alternative cases of KOH-reuse and steam processes had GHG emissions of 15.4 kg CO2 eq and 10.2 kg CO2 eq for every 1 kg of activated carbon, respectively. Monte Carlo simulation showed 49.96% of the probability for an investment to be profitable in activated carbon production from lignocellulosic biomass for supercapacitor electrodes.

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4502 ◽  
Author(s):  
Minliang Yang ◽  
Kurt A. Rosentrater

Bioproducts have attracted much attention in recent years due to the increasing environmental concerns about petroleum products. In this study, we aimed to explore potential environmental impacts and economic feasibility of pressure sensitive bio-adhesive (PSA) produced from the reversible addition-fragmentation chain transfer polymerization process. A detail process model of pressure sensitive bio-adhesive was developed in order to thoroughly understand both economic and environmental impacts of this production process. Life cycle assessment results showed that the overall environmental impacts of bio-adhesive was ~30% lower compared to the petro-adhesive’s production process. The minimum selling price for this pressure sensitive bio-adhesive was calculated as $3.48/kg. Sensitivity analysis results indicated that raw materials costs had the most significant impact on pressure sensitive bio-adhesive’s selling price, followed by total capital investment. Electricity sources had larger environmental impacts to the overall bio-adhesive production process compared to transportation distance and product yield. These results highlight the environmental advantage and potential economic competency of this pressure sensitive bio-based adhesive.


2020 ◽  
Vol 22 (20) ◽  
pp. 6836-6845
Author(s):  
Junyao Wang ◽  
Xiangzhou Yuan ◽  
Shuai Deng ◽  
Xuelan Zeng ◽  
Zhi Yu ◽  
...  

This study assessed waste PET-derived activated carbon coupled with temperature swing CO2 adsorption to provide a comprehensive investigation on the potential life cycle environmental impacts.


2021 ◽  
Author(s):  
Abhay Athaley ◽  
Yue Zhang ◽  
Eleftherios T. Papoutsakis ◽  
Marianthi Ierapetritou

Abstract The need for producing renewable fuels from biomass has increased due to depleting fossil resources and environmental concerns. However, the low fraction of biomass carbon converted to product is an undeniable drawback for most current biofuel productions from fermentation due to undecomposed lignin in biomass composition and carbon loss as CO2. In this work, two main production routes of the MixAlco® process, the Ketonization route (KR) and Esterification route (ER) are evaluated for the mixed alcohol production by brown algae, third-generation biomass without lignin. A Novel Fermentation process using syntrophic bacteria consortia (SBC) is developed to produce acetic acid from waste gas produced by KR and ER process. The paper investigates the integrated flowsheet for these alternative routes, using techno-economic and life cycle analysis to compare the minimum selling price and environmental impacts. The ER's capital and operating cost combined with the SBC is the highest compared with other routes. The cost of raw materials and utilities are the two major cost factors for all the processing routes examined. ER process performs the best in terms of environmental impacts except in water depletion compared with other processes, while the KR process performs the worst regarding the environmental metrics.


Author(s):  
Abigail R. Clarke-Sather ◽  
Saleh Mamun ◽  
Daniel Nolan ◽  
Patrick Schoff ◽  
Matthew Aro ◽  
...  

Abstract Life cycle assessment (LCA) is a well-established tool for measuring environmental effects of existing technology. While the most recent LCA research has focused on environmental impacts, in particular on the effects of climate change, there is growing interest in how LCA can be used prospectively. A 2019 workshop in Duluth, Minnesota sought to define the needs and priorities of prospective life cycle assessment from a perspective that considers diverse viewpoints. In that workshop, participants outlined frameworks for how sustainability impacts might figure into a prospective LCA tool focused on assessing technologies currently under development. Those frameworks included social and economic impacts, which were characterized alongside environmental impacts, with the goal of predicting potential impacts and developing recommendations for improving technologies. Cultural perspective, in particular the roots of the German circular economy, was explored and held up as a reminder that different communities are influenced by different sustainability concerns, leading to diverse policy and cultural prerogatives. The purpose of this paper is to catalyze conversation about how to frame methodologies of existing LCA tools that could be used in a prospective sustainability context.


Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 209 ◽  
Author(s):  
Teodora Stillitano ◽  
Giacomo Falcone ◽  
Anna Irene De Luca ◽  
Antonio Piga ◽  
Paola Conte ◽  
...  

Advances in the adoption of technological innovations represent a great driver to improve the competitiveness of the Italian extra virgin olive oil (EVOO) industry. This work assesses the efficiency of an innovative extraction plant (with low oxidative impact, heating of paste before malaxation and a special decanter that avoids the final vertical centrifugation) in terms of oil yield and quality, and economic and environmental impacts. Economic and environmental impacts were evaluated by using both life cycle costing and life cycle assessment methodologies. A sensitivity analysis was also performed to highlight the uncertain factors that may strongly affect the results. Findings showed that olive milling with the innovative plant resulted in olive oil with a significant increase in quality, although the extraction yield was significantly higher when using conventional technology. In terms of environmental results, an average growth of 4.5% of the impacts in all categories was reached. The economic results revealed the highest extraction cost for the innovative scenario as well as the lower profitability, although a positive return in investment feasibility can be achieved due to an increase in the olive oil selling price. These findings could be useful to highlight the main hotspots in EVOO production and to suggest improvements for more sustainable management.


2020 ◽  
Vol 7 (3) ◽  
pp. 290-303
Author(s):  
Mayanglambam Manolata Devi ◽  
Nidhi Aggarwal ◽  
Shunmugavel Saravanamurugan

: Carbonaceous materials are proven to be vital in day-to-day life as well as in advanced science and technology applications. Rice straw, a secondary agricultural lignocellulosic biomass, has drawn great attention for the production of value-added carbonaceous material. Because, it can provide an alternative economic, greener and sustainable resource of carbon to non-renewable fossil fuelbased precursors while controlling the worsening situation of environmental pollution due to improper disposal and stubble burning. In this review, recent developments in the production of carbonaceous materials from rice straw are presented. Biochar and activated carbon were reported to be the prime carbonaceous materials prepared from the rice straw. Thus, pyrogenic preparation of biochar and the influence of its pyrolysis temperature to the yield, composition, surface area, porosity and morphology are preliminarily discussed. This is followed by a detailed discussion on the preparation of activated carbon with an emphasis on the influencing reaction factors for improving the characteristic properties of the activated carbons. Additionally, the major characterization techniques dealing with determining the surface area and porosity (BET analyzer) and microstructure (secondary electron microscope (SEM) and transmission electron microscope (TEM)) for both the carbonaceous materials are also discussed. Finally, major applications of both the carbonaceous materials are briefly reviewed. Thus, the present review clearly highlights the usefulness of agricultural lignocellulosic waste rice straw for the conversion of waste to value-added carbonaceous materials.


2021 ◽  
Vol 12 (4) ◽  
pp. 264
Author(s):  
Muhammad Danial ◽  
Fatin Amanina Azis ◽  
Pg Emeroylariffion Abas

Recent United Nations high-level dialogue on energy, which had emphasized on energy usage and environmental protection, has renewed commitments by different countries on the adoption of electric vehicle (EVs). This paper aims to analyze the economic feasibility of establishing electrical charging stations, which is an important factor for the wide adoption of EVs, using life cycle cost analysis. Although local data have been used, the method can be easily adopted to analyze economic feasibility at different markets. The findings have revealed that an electrical charging station is only feasible when the acquisition cost is kept to a minimum to return 1.47 times the initial investment in terms of life cycle cost. An acquisition cost of BND 29,725 on the electrical charging station represents the threshold below which an electrical charging station is more attractive. In order to promote these charging stations, the government needs to provide multiple incentives, including a subsidy to reduce the acquisition cost, relaxing control on the electric selling price, taxing the establishment of conventional filling stations, and minimally reducing the profit margin on the selling price of fossil fuel. It has been shown that a 40% initial subsidy on the purchase of electrical charging stations, coupled with a slight subsidy of BND 0.018/kWh on electricity, would make electrical charging stations economically competitive. To reach its target of 60% electrification of the transportation sector, Brunei would need to implement a structure program to establish between 646 and 3300 electrical charging stations by the year 2035, to cater for its expected number of EVs.


2021 ◽  
Vol 288 ◽  
pp. 125464
Author(s):  
Rufis Fregue Tagne Tiegam ◽  
Donald Raoul Tchuifon Tchuifon ◽  
Remo Santagata ◽  
Paul Alain Kouteu Nanssou ◽  
Solomon Gabche Anagho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document