scholarly journals Open-Circuit Fault-Tolerant Strategy for Interleaved Boost Converters via Filippov Method

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 352
Author(s):  
Cristina Morel ◽  
Ahmad Akrad ◽  
Rabia Sehab ◽  
Toufik Azib ◽  
Cherif Larouci

Interleaved converters use an increased number of power electronics switches; this may subsequently affect their reliability. However, this is an opportunity to develop fault-tolerant strategies to improve their reliability and to ensure continuity of service. This is why we herein propose, for the first time, a mathematical function to simultaneously model the healthy and faulty conditions of each switch, thus enabling a unique model of the system. This model is then used in an original fault-tolerant strategy based upon the peak current control with slope compensation. This method not only extends the stable range of the load variation but also ensures the stability in faulty conditions. Finally, the simulation results validate its effectiveness and confirm the theoretical analysis.

Author(s):  
Kamel Saleh ◽  
Mark Sumner

This paper introduces a sensorless-speed-controlled PMSM motor fed by a four-leg inverter in case of a single phase open circuit fault regardless in which phase is the fault. To minimize the system performance degradation due to a single phase open circuit fault, a fault tolerant control strategy that includes taking appropriate actions to control the two remaining healthy currents is used in addition to use the fourth leg of the inverter.  Tracking the saliency is done through measuring the dynamic current responses of the healthy phases of the PMSM motor due the IGBT switching actions using the fundamental PWM method without introducing any modification to the operation of the fourth leg of the inverter. Simulation results are provided to verify the effectiveness of the proposed strategy for sensorless controlling of a PMSM motor driven by a fault-tolerant four-phase inverter over a wide speed ranges under the case of a single phase open circuit.


2020 ◽  
Vol 1 (1) ◽  
pp. 49-58
Author(s):  
Jhon Jairo Herrera-Pérez ◽  
Alejandro Garcés-Ruiz

This paper presents a non-linear method based on sum-of-squares (SOS), to determine the stability of equilibrium points for the Buck, Boost, Buck-Boost and non-inverter Buck-Boost converters. These converters share a similar structure with a PI controller to regulate the output voltage. A quadratic Lyapunov function is proposed in all cases, and the conditions for stability are evaluated using convex optimization based on SOS models. The methodology is useful for academic purposes but also in practical applications like DC microgrids. Simulation results shows the advantages of the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1487
Author(s):  
Xiaoli Zhang ◽  
Zhengyu Zhu ◽  
Yang Yi

In this paper, a novel control algorithm with the capacity of fault tolerance and anti-disturbance is discussed for the systems subjected to actuator faults and mismatched disturbances. The fault diagnosis observer (FDO) and the disturbance observer (DO) are successively designed to estimate the dynamics of unknown faults and disturbances. Furthermore, with the help of the observed information, a sliding surface and the corresponding sliding mode controller are proposed to compensate the actuator faults and eliminate the impact of mismatched disturbances simultaneously. Meanwhile, the convex optimization algorithm is discussed to guarantee the stability of the controlled system. The favorable anti-disturbance and fault-tolerant results can also be proved. Finally, the validity of the algorithm is certified by the simulation results for typical unmanned aerial vehicles (UAV) systems.


Author(s):  
Mingzhou Gao

This article proposes a novel adaptive fault-tolerant control method for suppressing flutter and compensating for related failure in a flutter system. Considering cubic nonlinearity, external disturbances, and related failure, the flutter dynamic model was established firstly. Then, an adaptive fault-tolerant control law was proposed on basis of this model to compensate for related failure and suppress flutter. By Lyapunov stability analysis, the stability of proposed control law was proved in detail. On the last, simulation results further proved the effectiveness of the control law which can not only suppress flutter and compensate for related failure successfully but also has good robustness for external disturbances and system perturbation.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199568
Author(s):  
Tiantian Yu ◽  
Daqing Wang ◽  
Lifu Gao

Due to the loss of freedom, the stability and tracking ability of the manipulator around the singularity become worse. This article aims at improving the accuracy of the manipulator and ensuring the stability of the system with the damped reciprocal method. Firstly, the singularities are separated into forearm and wrist singularities to obtain the singular factors of the manipulator respectively. Secondly, a new mathematical function of the approximate damped reciprocal of the singular factor is proposed. Thirdly, the singularities are avoided by modifying the Jacobian matrixes of the manipulator with the approximate damped reciprocal algorithm. Finally, the effectiveness and the stability of the system are proved by the simulations on a manipulator with the spherical wrist. The simulation results prove that this method can largely improve the accuracy of the end-effector and can ensure the stability of the system around the singular region.


Sign in / Sign up

Export Citation Format

Share Document