scholarly journals Adaptation of Fire-Fighting Systems to Localization of Fires in the Premises: Review

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 522
Author(s):  
Geniy Kuznetsov ◽  
Nikolay Kopylov ◽  
Elena Sushkina ◽  
Alena Zhdanova

Fire protection is a basic safety issue for all categories of buildings. The criteria for effective fire suppression and the characteristics of extinguishing systems in insulated areas depend on a combination of factors. The main influences include the type of combustible material, ambient temperature, type of spray extinguisher, air inflow and outflow conditions, and space geometry. This article analyzes the most widely used fire-extinguishing technologies in different locations. The main aspects of using the pulsed delivery technology of extinguishing liquid are considered. Based on the analysis of publications from the last decade, it is possible to develop intelligent systems for recording fires and extinguishing fires in the premises.

2011 ◽  
Vol 130-134 ◽  
pp. 1054-1057
Author(s):  
Chang Sheng Liu

The fire fighting equipments used for fight forest and grassland fire of China are mainly small two-stroke gasoline-powered portable wind fire-extinguishers owing to these areas are located in the more remote and inaccessible, where generally stay away from water. The main drawback of the wind fire-extinguisher is that it would lower the efficiency of power attributed to overheating of the two-stroke gasoline engine in the long process of firefighting, which will lead to decline the output speed and volumetric flow of fire extinguishing wind drived by the turbine when fire ambient temperature is high in the spring and summer. If this situation occurs, it will reduce efficiency of its fire fighting, what is more the adverse effects of wind to help the fire rather than put out the fire because the output of the extinguishing wind speed and volumetric flow is too small. In order to avoid the occurrence of such adverse effects and improve the extinguishing effect of fire extinguishers in the long process of firefighting, a program which use CO2 coordinate with wind fire-extinguisher to put out a fire was proposed in this paper, and the structure, characteristics of operation and precautions of the CO2 fire-extinguisher were described detailly.


2014 ◽  
Vol 915-916 ◽  
pp. 356-361
Author(s):  
Zheng Wen Xie

FDS simulation software was used to establish the full size lampblack physics model of single wind pipe, using the orthogonal design method design of analog calculation conditions, research in the nozzle pressure, the droplet radius, nozzle, flow quantity and injection angle parameters under different conditions of water mist fire extinguishing effect. Based on a full-scale combustion and water mist fire extinguishing experiment, the water mist fire suppression was observed and test analysis etc, to better understand the flue water mist fire extinguishing feasibility, provides the theory basis for the design of efficient, reliable flue fire extinguishing system.


2020 ◽  
pp. 142-146
Author(s):  
В.А. Наумов ◽  
Н.Л. Великанов ◽  
А.В. Тришина

Цель статьи – получить эмпирические зависимости для характеристик трехплунжерных противопожарных насосов (ТПН), необходимые для автоматизации расчетов систем тушения пожаров на судах с применением распыленной морской воды. Задачи исследования: проверка непротиворечивости данных испытаний; определение расчетных зависимостей производительности ТПН, к.п.д., затраченной мощности от давления. Проведенный анализ результатов испытаний ТПН подтвердил возможность использования предложенных зависимостей в инженерных расчетах. Данные измерений удовлетворительно согласуются с результатами расчетов, за исключением к.п.д. Отклонение экспериментальных точек от эмпирических зависимостей, скорее всего, связано с занижением значений затраченной мощности на испытаниях при небольших давлениях. Предложено для оценки к.п.д. использовать ранее полученную типовую зависимость. Построены графики для характеристик насоса NP25/41-170S. Пример расчета рабочей точки насосной установки с использованием приближенной гидравлической характеристики водяной пожарной системы судна показал высокую эффективность предложенных методик. The purpose of the article is to obtain empirical dependences for the characteristics of three-plunger fire-fighting pumps (TFP), which are necessary for automating calculations of fire extinguishing systems on ships using sprayed seawater. Research objectives: checking the consistency of test data; determining the calculated dependences of the TFP performance, efficiency, power expended on pressure. The analysis of the TFP test results confirmed the possibility of using the proposed dependencies in engineering calculations. The measurement data are in satisfactory agreement with the results of calculations, with the exception of efficiency. The deviation of experimental points from the empirical dependences is most likely due to an underestimation of the power consumed during tests at low pressures. It is proposed to use the previously obtained typical dependence to estimate the efficiency. Graphs are plotted for the characteristics of the NP25/41-170S pump. An example of calculating the working point of a pumping unit using the approximate hydraulic characteristics of the ship's water fire system showed the high efficiency of the proposed methods.


Author(s):  
T Goode

Machinery spaces in the majority of Royal Navy (RN) vessels use carbon dioxide (CO2) as the primary fire suppressant. While CO2 is very effective for firefighting, particularly in machinery space application, it is harmful to life in the concentrations required for effective fire suppression; exposure to concentrations greater than 15% can cause death within sixty seconds. The use of CO2 and similar fire suppressant systems in machinery spaces presents a risk due to the potential exposure of personnel. This may occur in a fire scenario where personnel are unable to escape the affected compartment, if there is a leak in the system, or due to accidental discharge. These risks are typically mitigated through physical means and procedural controls. However, in the hierarchy of safety controls the primary means should always be the elimination of the hazard. Babcock Energy and Marine undertook a study for the United Kingdom Ministry of Defence (MoD) into alternative methods of firefighting on Royal Navy minor warship machinery spaces with the safety of personnel considered a key requirement. The study identified five alternatives to CO2 available on the market. One particular aerosol fire suppression system was found to be superior to the others for application in small craft. This system is not toxic, non-ozone depleting and leaves almost no residue after application to the affected space, enabling re-entry (provided that the space has been ventilated to remove the products of combustion). The study concluded that traditional methods of fire suppression should be reconsidered across all small craft due to the health and safety issues associated with CO2 and the availability of improved alternatives. This paper considers the use of traditional firefighting systems on naval vessels in light of 21st century health and safety regulations. An assessment of current fire extinguishing agents is presented followed by a case study to determine the most appropriate solution for a minor warship concept with a particular aerosol system being justified as the preferred option. The paper also considers if the same conclusions would be reached for major warships or if the difference in scale results in an alternative solution.


2020 ◽  
Vol 20 (2) ◽  
pp. 95-104
Author(s):  
Euipyeong Lee

The problems and safety measures for magnesium fires were analyzed based on the fire case analysis in this study. The following problems were analyzed: ① the fire occurs in areas where there is no regulation under the Hazardous Goods Safety Management Act, ② the lack of safety measures during the firefighting of magnesium fires, ③ absence of adaptive fire fighting agents or equipment, ④ absence of suitable fire fighting tactics. For safety measures, the following were analyzed: ① enactment of magnesium fire guidelines, ② the education and publicity regarding fire prevention and countermeasures by fire organizations, ③ the obligation to have appropriate fire extinguishing agents in the places where magnesium is stored and handled, ④ the development of suppression equipment and fire fighting tactics, and ⑤ the research and development of fire extinguishing agents.


2013 ◽  
Vol 790 ◽  
pp. 53-56
Author(s):  
Chen Jian ◽  
Xu Yan Ying ◽  
Wang Na

This paper presents an experimental study of fire suppression effectiveness with water mist containing FeCl2 additives.The investigation focuses on suppression effectiveness under various FeCl2 additives concentrations,working pressures and nozzle different height above the fire source . The experimental results show that: there is a significant impact on fire suppression effectiveness when adding FeCl2 to water mist. There is an optimum additive concentration of extinguishing fire, corresponding to the shortest extinguishing time, the least amount of water, the highest efficiency of extinguishing fire. The nozzle working pressures and nozzle position have effect on the performance of the water mist extinguishing: the greater the pressure is, the shorter water mist fire extinguishing time is. Under the same experimental conditions, the closer the water mist nozzles are to the oil pan, the shorter extinguishing time is.


Sign in / Sign up

Export Citation Format

Share Document