scholarly journals A Theoretical Framework for Multi-Hazard Risk Mapping on Agricultural Areas Considering Artificial Intelligence, IoT, and Climate Change Scenarios

2021 ◽  
Vol 9 (1) ◽  
pp. 39
Author(s):  
Roberto F. Silva ◽  
Maria C. Fava ◽  
Antonio M. Saraiva ◽  
Eduardo M. Mendiondo ◽  
Carlos E. Cugnasca ◽  
...  

This work proposes a data-driven theoretical framework for addressing: (i) extreme climate events prediction through multi-hazard risk mapping using remote sensing, artificial intelligence, and hydrological models, considering multiple hazards; and (ii) environmental monitoring using on-site data collection and IoT technologies. The framework considers the possibility of evaluating multiple climate change scenarios for improving decision-making in terms of Government policies and farm planning. Its main requirements are gathered based on a literature review. Several essential metrics that can be evaluated, considering both supervised and unsupervised metrics and key performance indicators considering the triple bottom line aspects, are also proposed. The framework also adopts multi-hazard (considering several hazards) and multi-risk (considering several relevant stakeholders) aspects and can be used to simulate different scenarios, an essential task for improving decision-making.

2012 ◽  
Vol 16 (3) ◽  
pp. 801-814 ◽  
Author(s):  
J.-S. Yang ◽  
E.-S. Chung ◽  
S.-U. Kim ◽  
T.-W. Kim

Abstract. This paper quantifies the transformed effectiveness of alternatives for watershed management caused by climate change and urbanization and prioritizes five options using multi-criteria decision making techniques. The climate change scenarios (A1B and A2) were obtained by using a statistical downscaling model (SDSM), and the urbanization scenario by surveying the existing urban planning. The flow and biochemical oxygen demand (BOD) concentration duration curves were derived, and the numbers of days required to satisfy the environmental flow requirement and the target BOD concentration were counted using the Hydrological Simulation Program-Fortran (HSPF) model. In addition, five feasible alternatives were prioritized by using multi-criteria decision making techniques, based on the driving force-pressure-state-impact-response (DPSIR) framework and cost component. Finally, a sensitivity analysis approach for MCDM methods was conducted to reduce the uncertainty of weights. The result indicates that the most sensitive decision criterion is cost, followed by criteria response, driving force, impact, state and pressure in that order. As it is certain that the importance of cost component is over 0.127, construction of a small wastewater treatment plant will be the most preferred alternative in this application.


2005 ◽  
Vol 85 (2) ◽  
pp. 329-343 ◽  
Author(s):  
A. Bootsma ◽  
S. Gameda and D.W. McKenney

Agroclimatic indices (heat units and water deficits) were determined for the Atlantic region of Canada for a baseline climate (1961 to 1990 period) and for two future time periods (2010 to 2039 and 2040 to 2069). Climate scenarios for the future periods were primarily based on outputs from the Canadian General Circulation Model (GCM) that included the effects of aerosols (CGCMI-A), but variability introduced by multiple GCM experiments was also examined. Climatic data for all three periods were interpolated to a grid of about 10 to 15 km. Agroclimatic indices were computed and mapped based on the gridded data. Based on CGCMI-A scenarios interpolated to the fine grid, average crop heat units (CHU) would increase by 300 to 500 CHU for the 2010 to 2039 period and by 500 to 700 CHU for the 2040 to 2069 period in the main agricultural areas of the Atlantic region. However, increases in CHU for the 2040 to 2069 period typically varied from 450 to 1650 units in these regions when variability among GCM experiments was considered, resulting in a projected range of 2650 to 4000 available CHU. Effective growing degree-days above 5°C (EGDD) typically increased by about 400 units for the 2040 to 2069 period in the main agricultural areas, resulting in available EGDD from 1800 to over 2000 units. Uncertainty introduced by multiple GCMs increased the range from 1700 to 2700 EGDD. A decrease in heat units (cooling) is anticipated along part of the coast of Labrador. Anticipated changes in water deficits (DEFICIT), defined as the amount by which potential evapotranspiration exceeded precipitation over the growing season, typically ranged from +50 to −50 mm for both periods, but this range widened from +50 to −100 mm when variability among GCM experiments was considered. The greatest increases in deficits were expected in the central region of New Brunswick for the 2040 to 2069 period. Our interpolation procedures estimated mean winter and summer temperature changes that were 1.4°C on average lower than a statistical downscaling procedure (SDSM) for four locations. Increases in precipitation during summer and autumn averaged 20% less than SDSM. During periods when SDSM estimated relatively small changes in temperature or precipitation, our interpolation procedure tended to produce changes that were larger than SDSM. Additional investigations would be beneficial that explore the impact of a range of scenarios from other GCM models, other downscaling methods and the potential effects of change in climate variability on these agroclimatic indices. Potential impacts of these changes on crop yields and production in the region also need to be explored. Key words: Crop heat units, effective growing degree-days, water deficits, climate change scenarios, statistical downscaling, spatial interpolation


2017 ◽  
Vol 114 (11) ◽  
pp. 2848-2853 ◽  
Author(s):  
Gerrad D. Jones ◽  
Boris Droz ◽  
Peter Greve ◽  
Pia Gottschalk ◽  
Deyan Poffet ◽  
...  

Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.


2011 ◽  
Vol 8 (6) ◽  
pp. 9889-9925 ◽  
Author(s):  
J.-S. Yang ◽  
E.-S. Chung ◽  
S.-U. Kim ◽  
T.-W. Kim ◽  
Y. D. Kim

Abstract. This paper quantifies the transformed effectiveness of alternatives for watershed management caused by climate change and urbanization and prioritizes five options using multi-criteria decision making techniques. The climate change scenarios (A1B and A2) were obtained by using a statistical downscaling model (SDSM), and the urbanization scenario by surveying the existing urban planning. The flow and biochemical oxygen demand (BOD) concentration duration curves were derived, and the numbers of days required to satisfy the environmental flow requirement and the target BOD concentration were counted using the Hydrological Simulation Program-Fortran (HSPF) model. In addition, five feasible alternatives were prioritized by using multi-criteria decision making techniques, based on the driving force-pressure-state-impact-response (DPSIR) framework and cost component. Finally, a sensitivity analysis approach for MCDM methods was conducted to reduce the uncertainty of weights. The result indicates that the most sensitive decision criterion is cost, followed by criteria response, driving force, impact, state and pressure in that order. Since it is certain that the importance of cost component is over 0.127, use of the groundwater collected by subway stations will be the most preferred alternative in this application.


2020 ◽  
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Maria Panitsa ◽  
Panayiotis Trigas ◽  
Arne Strid ◽  
...  

AbstractIn the Anthropocene era, climate change poses a great challenge in environmental management and decision-making for species and habitat conservation. To support decision-making, many studies exist regarding the expected vegetation changes and the impacts of climate change on European plants, yet none has investigated how climate change will affect the extinction risk of the entire endemic flora of an island biodiversity hotspot, with intense human disturbance. Our aim is to assess, in an integrated manner, the impact of climate change on the biodiversity and biogeographical patterns of Crete and to provide a case-study upon which a cost-effective and climate-smart conservation planning strategy might be set. We employed a variety of macroecological analyses and estimated the current and future biodiversity, conservation and extinction hotspots in Crete, as well as the factors that may have shaped these distribution patterns. We also evaluated the effectiveness of climate refugia and the NATURA 2000 network (PAs) on protecting the most vulnerable species and identified the taxa that should be of conservation priority based on the Evolutionary Distinct and Globally Endangered (EDGE) index, during any environmental management process. The highlands of Cretan mountain massifs have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity. They are also identified as biodiversity hotspots, as well as areas of high conservation and evolutionary value, due their high EDGE scores. Due to the ‘escalator to extinction’ phenomenon and the subsequent biotic homogenization, these areas are projected to become diversity ‘death-zones’ in the near future and should thus be prioritized in terms of conservation efforts and by decision makers. In-situ conservation focusing at micro-reserves and ex-situ conservation practices should be considered as an insurance policy against such biodiversity losses, which constitute cost-effective conservation measures. Scientists and authorities should aim the conservation effort at areas with overlaps among PAs and climate refugia, characterized by high diversity and EDGE scores. These areas may constitute Anthropocene refugia. Thus, this climate-smart, cost-effective conservation-prioritization planning will allow the preservation of evolutionary heritage, trait diversity and future services for human well-being and acts as a pilot for similar regions worldwide.


2020 ◽  
Author(s):  
Paulo Victor N. Araújo ◽  
Venerando E. Amaro ◽  
Leonlene S. Aguiar ◽  
Caio C. Lima ◽  
Alexandre B. Lopes

Abstract. Previous studies on tidal flood mapping are mostly with continental and/or global scale approaches. Besides, the few works on local scale perception are concentrated in Europe, Asia, and North America. Here we present a case study approaching a flood risk mapping methodology against climate change scenarios in a region with a strong environmental and social appeal. The study site is an estuarine cut in the Brazilian semi-arid, covering part of two state conservation units, which has been in recent years suffering severe consequences from flooding by tides. In this case study, high geodetic precision data (LiDAR DEM), together with robust tidal return period statistics and data from current sea level rise scenarios were used. We found that approximately 118.26 km2 of the estuary understudy is at high risk, extremely high risk and urgently in need of mitigation measures. This case study can serve as a basis for future management actions as well as a model for applying risk mapping in other coastal areas.


2022 ◽  
pp. 1-25
Author(s):  
Paolo Cavaliere ◽  
Graziella Romeo

Abstract Under what conditions can artificial intelligence contribute to political processes without undermining their legitimacy? Thanks to the ever-growing availability of data and the increasing power of decision-making algorithms, the future of political institutions is unlikely to be anything similar to what we have known throughout the last century, possibly with parliaments deprived of their traditional authority and public decision-making processes largely unaccountable. This paper discusses and challenges these concerns by suggesting a theoretical framework under which algorithmic decision-making is compatible with democracy and, most relevantly, can offer a viable solution to counter the rise of populist rhetoric in the governance arena. Such a framework is based on three pillars: (1) understanding the civic issues that are subjected to automated decision-making; (2) controlling the issues that are assigned to AI; and (3) evaluating and challenging the outputs of algorithmic decision-making.


2021 ◽  
Author(s):  
Thomas Gasser ◽  
Artem Baklanov ◽  
Armon Rezai ◽  
Côme Chéritel ◽  
Michael Obersteiner

<p>Cost-benefit integrated assessment models (IAMs) include a simplified representation of both the anthropogenic and natural components of the Earth system, and of the interactions and feedbacks between them. As such, they embed economic- and physics-based equations, and the uncertainty in one domain will inevitably affect the other. Most often, however, the physical uncertainty is explored by testing the sensitivity of the optimal mitigation pathway to a few key physical parameters; but for robust decision-making, the optimal pathway itself should ideally embed the uncertainty.</p><p>Here, we present a new physical module for cost-benefit IAMs that is based on state-of-the-art climate sciences. The module follows well-established formulations that were deemed a good trade-off between simplicity and accuracy. Therefore, its overall complexity remains low, as is necessary to be used with optimisation algorithms, but able to reproduce the behaviour of more complex CMIP models. It is made of four components that all exhibit a degree of non-linearity: global climate response, ocean carbon cycle, land carbon cycle, and permafrost carbon system. (Two impact components were also developed: surface ocean acidification, and sea-level rise response.)</p><p>The calibration of this new module is done through Bayesian inference. Prior distributions of the module’s parameters are taken from CMIP multi-model ensembles, and prior distributions of historical constraints are taken from observational datasets (such as global mean surface temperature) and other synthesis exercises (such as IPCC reports or the global carbon budget). The Bayesian calibration itself is done with a full-rank automatic differentiation variational inference (ADVI) algorithm, which leads to posterior distributions of parameters that are consistent with observations. Additionally, the full-rank ADVI algorithm also finds correlations between parameters (i.e. co-distributions) that tend to further reduce the uncertainty in projected climate change.</p><p>We then implement this new module within the DICE model (that is likely the most widely used cost-benefit IAM), and we demonstrate a significant improvement of the physical modelling, and thus of the IAM’s results. We run a Monte Carlo ensemble of 4000 elements taken from the Bayesian calibration, to properly sample the physical uncertainty in the optimal mitigation pathway simulated by DICE. Notably, our new module leads to a social cost of carbon (SCC) of 26 USD / tCO2 (90% range: 13–43), which is lower than 37 USD / tCO2 in the original model.</p><p>This Monte Carlo approach is not a robust one, however, and a final simulation is run to estimate one <em>unique</em> mitigation pathway shared across all 4000 states of the world (by maximizing the total welfare). This <em>robust</em> mitigation pathway is therefore a unique solution that embeds the physical uncertainty, and it is different from the average pathway of the Monte Carlo ensemble. The unicity of the solution (and its lack of explicit uncertainty) makes it very attractive for decision-making and communication purposes. We posit this robust approach could be applied with the cost-optimal IAMs that are used by the IPCC to create and investigate climate change scenarios.</p>


Sign in / Sign up

Export Citation Format

Share Document