scholarly journals Indoor and Outdoor Nanoparticle Concentrations in an Urban Background Area in Northern Sweden: The NanoOffice Study

Environments ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 75
Author(s):  
Hans Orru ◽  
Annika Hagenbjörk ◽  
Henrik Olstrup

In recent years, nanoparticles (NPs) have received much attention due to their very small size, high penetration capacity, and high toxicity. In urban environments, combustion-formed nanoparticles (CFNPs) dominate in particle number concentrations (PNCs), and exposure to those particles constitutes a risk to human health. Even though fine particles (<2.5 µm) are regularly monitored, information on NP concentrations, both indoors and outdoors, is still limited. In the NanoOffice study, concentrations of nanoparticles (10–300 nm) were measured both indoors and outdoors with a 5-min time resolution at twelve office buildings in Umeå. Measurements were taken during a one-week period in the heating season and a one-week period in the non-heating season. The measuring equipment SMPS 3938 was used for indoor measurements, and DISCmini was used for outdoor measurements. The NP concentrations were highest in offices close to a bus terminal and lowest in offices near a park. In addition, a temporal effect appeared, usually with higher concentrations of nanoparticles found during daytime in the urban background area, whereas considerably lower nanoparticle concentrations were often present during nighttime. Infiltration of nanoparticles from the outdoor air into the indoor air was also common. However, the indoor/outdoor ratios (I/O ratios) of NPs showed large variations between buildings, seasons, and time periods, with I/O ratios in the range of 0.06 to 0.59. The reasons for high indoor infiltration rates could be NP emissions from adjacent outdoor sources. We could also see particle growth since the indoor NPs were, on average, almost twice as large as the NPs measured outdoors. Despite relatively low concentrations of NPs in the urban background air during nighttime, they could rise to very high daytime concentrations due to local sources, and those particles also infiltrated the indoor air.

2013 ◽  
Vol 39 (4) ◽  
pp. 15-28 ◽  
Author(s):  
Bernard Połednik

Abstract Simultaneous measurements of the indoor and outdoor particle mass (PM) and particle number (PN) concentrations as well as the air temperature, relative humidity (RH), and CO2 concentrations have been conducted in 6 occupied (L) and unoccupied (V) classrooms in 3 secondary schools in Lublin, Poland, in the heating (H) and summer (S) seasons. The schools were located in residential areas where the majority of private houses are heated by means of coal-burning stoves. The ratios of the average particle concentrations in occupied and unoccupied classrooms (L/V) were higher during the heating season measurements. The ratios of the average particle concentrations during the measurements in the heating and summer seasons (H/S) were higher in occupied classrooms. In both seasons the average PM and PN concentrations amounted to 239 μg/m3 and 7.4×103/cm3 in the occupied classrooms, and to 76 μg/m3 and 5.4×103/cm3 in the unoccupied classrooms, respectively. The particle exposures experienced by students were higher in the monitored classrooms than outdoors and were on average about 50% higher in the heating than in the summer season. A positive correlation between mass concentrations of coarse particles and indoor air temperature, RH and CO2 concentrations in both seasons was observed. The concentrations of fine particles were negatively correlated with the indoor air parameters in the heating season, and positively correlated in the summer season.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Shiqiang Zhou ◽  
Mingpeng Chen ◽  
Qingjie Lu ◽  
Yumin Zhang ◽  
Jin Zhang ◽  
...  

AbstractFormaldehyde (HCHO) is the main source of indoor air pollutant. HCHO sensors are therefore of paramount importance for timely detection in daily life. However, existing sensors do not meet the stringent performance targets, while deactivation due to sensing detection at room temperature, for example, at extremely low concentration of formaldehyde (especially lower than 0.08 ppm), is a widely unsolved problem. Herein, we present the Ag nanoparticles (Ag NPs) sensitized dispersed In2O3 nanograin via a low-fabrication-cost hydrothermal strategy, where the Ag NPs reduces the apparent activation energy for HCHO transporting into and out of the In2O3 nanoparticles, while low concentrations detection at low working temperature is realized. The pristine In2O3 exhibits a sluggish response (Ra/Rg = 4.14 to 10 ppm) with incomplete recovery to HCHO gas. After Ag functionalization, the 5%Ag-In2O3 sensor shows a dramatically enhanced response (135) with a short response time (102 s) and recovery time (157 s) to 1 ppm HCHO gas at 30 °C, which benefits from the Ag NPs that electronically and chemically sensitize the crystal In2O3 nanograin, greatly enhancing the selectivity and sensitivity.


2021 ◽  
Author(s):  
SHRAVAN KUMAR ◽  
Manish Kumar Jain

Abstract Women spend relatively more time in indoor conditions in developing countries. Exposure to various indoor air pollutants leads them to higher health risks according to Household air quality in which they reside. Particulate matter (PM) exposure with their exposure duration inside the household plays a significant role in women's Respiratory problems. We measured size segregated particulate matter concentrations in 63 residences at different locations. Respiratory dust depositions (RDDs) for 118 women in their different respiratory regions like head-airway (HD), tracheobronchial (TB), and alveolar (AL) region for the three PM size fractions (PM10, PM2.5 & PM1) were investigated. For different positions like Light exercise and the Sitting condition, RDD values found for AL region was 0.091 µgmin− 1 (SD: 0.067, 0.012–0.408) and 0.028 µgmin− 1 (SD: 0.021, 0.003–0.126) for PM10, 0.325 µgmin− 1 (SD: 0.254, 0.053–1.521) and 0.183 µgmin− 1 (SD: 0.143, 0.031–0.857) for PM2.5, 0.257 µgmin− 1 (SD: 0.197, 0.043–1.04) and 0.057 µgmin− 1 (SD: 0.044, 0.009–0.233) respectively for PM1 to females. RDDs values in the AL region significantly increases as PM10 (11%), PM2.5 (68%), and PM1 (21%), confirm that for women, the AL region is the most prominent affected zone by fine particles (PM2.5).


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Ulf Olofsson ◽  
Lars Olander ◽  
Anders Jansson

Recently, much attention has been paid to the influence of airborne particles in the atmosphere on human health. Sliding contacts are a significant source of airborne particles in urban environments. In this study airborne particles generated from a sliding steel-on-steel combination are studied using a pin-on-disk tribometer equipped with airborne-particle counting instrumentation. The instrumentation measured particles in size intervals from 0.01μm to 32μm. The result shows three particle size regimes with distinct number peaks: ultrafine particles with a size distribution peak around 0.08μm, fine particles with a peak around 0.35μm, and coarse particles with a peak around 2 or 4μm. Both the particle generation rate and the wear rate increase with increasing sliding velocity and contact pressure.


Author(s):  
Xing Li ◽  
Shanshan Li ◽  
Qiulin Xiong ◽  
Xingchuan Yang ◽  
Mengxi Qi ◽  
...  

Beijing, which is the capital of China, suffers from severe Fine Particles (PM2.5) pollution during the heating season. In order to take measures to control the PM2.5 pollution and improve the atmospheric environmental quality, daily PM2.5 samples were collected at an urban site from 15 November to 31 December 2016, characteristics of PM2.5 chemical compositions and their effect on atmospheric visibility were analyzed. It was found that the daily average mass concentrations of PM2.5 ranged from 7.64 to 383.00 μg m−3, with an average concentration of 114.17 μg m−3. On average, the Organic Carbon (OC) and Elemental Carbon (EC) contributed 21.39% and 5.21% to PM2.5, respectively. Secondary inorganic ions (SNA: SO42− + NO3− + NH4+) dominated the Water-Soluble Inorganic Ions (WSIIs) and they accounted for 47.09% of PM2.5. The mass concentrations of NH4+, NO3− and SO42− during the highly polluted period were 8.08, 8.88 and 6.85 times greater, respectively, than during the clean period, which contributed most to the serious PM2.5 pollution through the secondary transformation of NO2, SO2 and NH3. During the highly polluted period, NH4NO3 contributed most to the reconstruction extinction coefficient (b′ext), accounting for 35.7%, followed by (NH4)2SO4 (34.44%) and Organic Matter (OM: 15.24%). The acidity of PM2.5 in Beijing was weakly acid. Acidity of PM2.5 and relatively high humidity could aggravate PM2.5 pollution and visibility impairment by promoting the generation of secondary aerosol. Local motor vehicles contributed the most to NO3−, OC, and visibility impairment in urban Beijing. Other sources of pollution in the area surrounding urban Beijing, including coal burning, agricultural sources, and industrial sources in the Hebei, Shandong, and Henan provinces, released large amounts of SO2, NH3, and NO2. These, which were transformed into SO42−, NH4+, and NO3− during the transmission process, respectively, and had a great impact on atmospheric visibility impairment.


2019 ◽  
Vol 111 ◽  
pp. 02017 ◽  
Author(s):  
Mervi Ahola ◽  
Jorma Säteri ◽  
Laura Sariola

The Finnish Society of Indoor Air Quality and Climate (FiSIAQ) introduced a Classification of Indoor Climate, Construction Cleanliness, and Finishing Materials in 1995. The Classification of Indoor Climate has been revised to meet the new Decree on indoor air quality and ventilation, European standards and experience from users of the classification. The most significant change is that target values for concentration and the in/out ratio of fine particles have been added. Other adjustments have been made to ensure good indoor environment and energy efficiency, but with reasonable investments. The criteria for emissions from building material and furniture were also updated. The Building Information Foundation RTS sr has run the M1-labelling of building products since 1996. The voluntary approach has been proven to improve the IAQ in new buildings and to reduce emissions from building materials. The Classification of Indoor Environment 2018 is integrated part of the new RTS Environmental Classification system.


Sign in / Sign up

Export Citation Format

Share Document