scholarly journals Nitrogen and Phosphorus Resorption in Planted Forests Worldwide

Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 201 ◽  
Author(s):  
Dalong Jiang ◽  
Qinghong Geng ◽  
Qian Li ◽  
Yiqi Luo ◽  
Jason Vogel ◽  
...  

Nutrient resorption from senescing leaves is one of the plants’ essential nutrient conservation strategies. Parameters associated with resorption are important nutrient-cycling constraints for accurate predictions of long-term primary productivity in forest ecosystems. However, we know little about the spatial patterns and drivers of leaf nutrient resorption in planted forests worldwide. By synthesizing results of 146 studies, we explored nitrogen (N) and phosphorus (P) resorption efficiency (NRE and PRE) among climate zones and tree functional types, as well as the factors that play dominant roles in nutrient resorption in plantations globally. Our results showed that the mean NRE and PRE were 58.98% ± 0.53% and 60.21% ± 0.77%, respectively. NRE significantly increased from tropical to boreal zones, while PRE did not significantly differ among climate zones, suggesting differential impacts of climates on NRE and PRE. Plant functional types exert a strong influence on nutrient resorption. Conifer trees had higher PRE than broadleaf trees, reflecting the adaptation of the coniferous trees to oligotrophic habitats. Deciduous trees had lower PRE than evergreen trees that are commonly planted in P-limited low latitudes and have long leaf longevity with high nutrient use efficiency. While non-N-fixing trees had higher NRE than N-fixing trees, the PRE of non-N-fixing trees was lower than that of N-fixing trees, indicating significant impact of the N-fixing ability on the resorption of N and P. Our multivariate regression analyses showed that variations in NRE were mainly regulated by climates (mean annual precipitation and latitude), while variations in PRE were dominantly controlled by green leaf nutrient concentrations (N and P). Our results, in general, suggest that the predicted global warming and changed precipitation regimes may profoundly affect N cycling in planted forests. In addition, green leaf nutrient concentrations may be good indicators for PRE in planted forests.

2021 ◽  
Author(s):  
Dalong Jiang ◽  
Qian Li ◽  
Qinghong Geng ◽  
Menghua Zhang ◽  
Chonghua Xu ◽  
...  

Abstract Aims Leaf nutrient resorption is sensitive to changes in soil nutrients. However, the effects of N deposition on nutrient resorption efficiency (NuRE) in plant macro-nutrients remain unclear. Poplar (Populus deltoids) is one of the most extensively cultivated hardwood species worldwide. We explored general patterns and dominant drivers of NuRE and stoichiometry of poplar plantations in response to N addition. Methods We conducted a 4-year N-addition experiment to explore NuRE and stoichiometric responses to N addition in two poplar (Populus deltoids) plantations (8- and 12-year-old stands) in a coastal region of eastern China. We measured soil and foliar (green and senesced leaves) concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) for a series of N addition treatments including N0 (0 kg N ha ‒1 yr ‒1), N1 (50 kg N ha ‒1 yr ‒1), N2 (100 kg N ha ‒1 yr ‒1), N3 (150 kg N ha ‒1 yr ‒1), and N4 (300 kg N ha ‒1 yr ‒1). Important Findings Consistent for (both) 8- and 12-year-old stands, N addition did not affect the NuRE and stoichiometry (with the exception of CaRE and CaRE:MgRE ratio). NRE-PRE scaling slopes were consistently less than 1.0 under N addition. These results suggest that NRE generally decouples from PRE within each N treatment. Moreover, these results point to robust control of green leaf nutritional status on nutrient resorption processes as indicated by the positive relationships between nutrient resorption efficiency and green leaf nutrient concentrations. Our findings provided a direct evidence that growth in 12-year-old poplar plantations was N-limited in a coastal region of eastern China.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


2021 ◽  
Author(s):  
Mengjiao Sun ◽  
Enqing Hou ◽  
Jiasen Wu ◽  
Jianqin Huang ◽  
Xingzhao Huang

Abstract Background: Soil nutrients play critical roles in regulating and improving the sustainable development of economic forests. Consequently, an elucidation of the spatial patterns and drivers of soil nutrients in these forests is fundamental to their management. For this study, we collected 314 composite soils at a 0-30 cm depth from a typical hickory plantation in Lin 'an, Zhejiang Province, China. We determined the concentrations of macronutrients (i.e., soil organic carbon, hydrolyzed nitrogen, available phosphorus, and available potassium) and micronutrients (i.e., iron, manganese, zinc, and copper.) of the soils. We employed random forest analysis to quantify the relative importance of soil-forming factors to predict the soil nutrient concentrations, which could then be extrapolated to the entire hickory region. Results: Random forest models explained 61%–88% of the variations in soil nutrient concentrations. The mean annual temperature and mean annual precipitation were the most important predictor of soil macronutrient and micronutrient concentrations. Moreover, parent material was another key predictor of soil available phosphorus and micronutrient concentrations. Mapping results demonstrated the importance of climate in controlling the spatial distribution of soil nutrient concentrations at finer scales, as well as the effect of parent material, topography, stand structure, and management measures of hickory plantations. Conclusions: Our study highlights the biotic factors, abiotic factors, and management factors control over soil macronutrient and micronutrient concentrations, which have significant implications for the sustainability of soil nutrients in forest plantations.


HortScience ◽  
2016 ◽  
Vol 51 (11) ◽  
pp. 1378-1383
Author(s):  
Mehdi Sharifi ◽  
Julia Reekie ◽  
Andrew Hammermeister ◽  
Mohammed Zahidul Alam ◽  
Taylor MacKey

There is an increasing interest for use of cover crops in orchards; however, the species that are most likely to be successfully implemented and their impact on yield and soil productivity have not been fully explored under Maritimes climate. This study investigated the effect of various cover crops treatments on organic apple (Malus domestica Borkh cv. Honeycrisp) yield and leaf nutrient concentrations in Nova Scotia over 3 years. Various cover crop mixtures including legumes, cereals, and grasses were planted using a modified Swiss Sandwich System (SSS). The cover crops treatments did not affect apple yield. In 2012, the input of biomass to the soil was 89% and 144% greater for alfalfa (ALF) and other cover crop treatments than unseeded (CON) treatment, respectively. The pea, oats, vetch mixture (POVM) contributed 24% higher biomass N to soil compared with average of other cover crops in 2012. Soil available K concentration in the tilled strip was increased in the 3rd year of the study compared with the initial values across cover crop treatments. The red clover oats mixture (RCOM), POVM, and Triple Mix (TM) treatments appeared to add the greatest amount of available K to the soil among treatments. The CON, TM, and ALF treatments resulted in higher leaf Mn concentration in only 2012 and CON, sweet clover and oats mixture (SCOM), and ALF resulted in higher leaf P concentration in 2014, compared with other treatments. Cover crops did not compete with apple trees and their most beneficial and consistent contribution was to total C, total N, and K input to the soil.


Sign in / Sign up

Export Citation Format

Share Document