Magnesium fertilization has a greater impact on soil and leaf nutrient concentrations than nitrogen or calcium fertilization in Florida orange production

Author(s):  
Eduardo Esteves ◽  
Davie M. Kadyampakeni ◽  
Flavia Zambon ◽  
Rhuanito S. Ferrarezi ◽  
Gabriel Maltais-Landry
Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 201 ◽  
Author(s):  
Dalong Jiang ◽  
Qinghong Geng ◽  
Qian Li ◽  
Yiqi Luo ◽  
Jason Vogel ◽  
...  

Nutrient resorption from senescing leaves is one of the plants’ essential nutrient conservation strategies. Parameters associated with resorption are important nutrient-cycling constraints for accurate predictions of long-term primary productivity in forest ecosystems. However, we know little about the spatial patterns and drivers of leaf nutrient resorption in planted forests worldwide. By synthesizing results of 146 studies, we explored nitrogen (N) and phosphorus (P) resorption efficiency (NRE and PRE) among climate zones and tree functional types, as well as the factors that play dominant roles in nutrient resorption in plantations globally. Our results showed that the mean NRE and PRE were 58.98% ± 0.53% and 60.21% ± 0.77%, respectively. NRE significantly increased from tropical to boreal zones, while PRE did not significantly differ among climate zones, suggesting differential impacts of climates on NRE and PRE. Plant functional types exert a strong influence on nutrient resorption. Conifer trees had higher PRE than broadleaf trees, reflecting the adaptation of the coniferous trees to oligotrophic habitats. Deciduous trees had lower PRE than evergreen trees that are commonly planted in P-limited low latitudes and have long leaf longevity with high nutrient use efficiency. While non-N-fixing trees had higher NRE than N-fixing trees, the PRE of non-N-fixing trees was lower than that of N-fixing trees, indicating significant impact of the N-fixing ability on the resorption of N and P. Our multivariate regression analyses showed that variations in NRE were mainly regulated by climates (mean annual precipitation and latitude), while variations in PRE were dominantly controlled by green leaf nutrient concentrations (N and P). Our results, in general, suggest that the predicted global warming and changed precipitation regimes may profoundly affect N cycling in planted forests. In addition, green leaf nutrient concentrations may be good indicators for PRE in planted forests.


HortScience ◽  
2016 ◽  
Vol 51 (11) ◽  
pp. 1378-1383
Author(s):  
Mehdi Sharifi ◽  
Julia Reekie ◽  
Andrew Hammermeister ◽  
Mohammed Zahidul Alam ◽  
Taylor MacKey

There is an increasing interest for use of cover crops in orchards; however, the species that are most likely to be successfully implemented and their impact on yield and soil productivity have not been fully explored under Maritimes climate. This study investigated the effect of various cover crops treatments on organic apple (Malus domestica Borkh cv. Honeycrisp) yield and leaf nutrient concentrations in Nova Scotia over 3 years. Various cover crop mixtures including legumes, cereals, and grasses were planted using a modified Swiss Sandwich System (SSS). The cover crops treatments did not affect apple yield. In 2012, the input of biomass to the soil was 89% and 144% greater for alfalfa (ALF) and other cover crop treatments than unseeded (CON) treatment, respectively. The pea, oats, vetch mixture (POVM) contributed 24% higher biomass N to soil compared with average of other cover crops in 2012. Soil available K concentration in the tilled strip was increased in the 3rd year of the study compared with the initial values across cover crop treatments. The red clover oats mixture (RCOM), POVM, and Triple Mix (TM) treatments appeared to add the greatest amount of available K to the soil among treatments. The CON, TM, and ALF treatments resulted in higher leaf Mn concentration in only 2012 and CON, sweet clover and oats mixture (SCOM), and ALF resulted in higher leaf P concentration in 2014, compared with other treatments. Cover crops did not compete with apple trees and their most beneficial and consistent contribution was to total C, total N, and K input to the soil.


HortScience ◽  
2010 ◽  
Vol 45 (3) ◽  
pp. 428-431 ◽  
Author(s):  
Michael V. Mickelbart

Consistent evaluation of nursery crop nutrient status within and among plots and years requires careful consideration of leaf collection practices. The objectives of this study were to determine the differences and variability among leaf age and cardinal position within the tree. Another objective was to determine if petioles should be included in leaf samples. Leaves were collected from seven trees of the Freeman maple (red–silver maple hybrid) Celebration® (Acer ×freemanii) from two leaf ages (early- and late-season leaves) and four positions (north, south, east, and west). On the south side of each tree, samples were separated into lamina, petiole, or lamina + petiole samples. Leaf traits were not different among positions, except that leaves on the north side of the tree had a lower specific leaf weight (SLW). Leaf nitrogen (N) was slightly lower on the north and west sides of the tree and leaf calcium (Ca) was highest on the south side of the tree, but otherwise position (i.e., side of the tree) had very little effect on leaf nutrient concentrations. Older leaves (leaves produced early in the season) were darker green and had a higher leaf area, longer petiole length, and lower SLW. Older leaves also had higher concentrations (on a mass basis) of all nutrients analyzed. Petiole concentrations of Ca, magnesium, and manganese were higher than lamina concentrations, whereas concentrations of N, sulfur, iron, zinc, boron, copper, and aluminum were all higher in the lamina. These differences, however, did not affect nutrient analyses conducted on samples consisting of lamina + petiole or lamina only. Variation within samples was lowest on the east and south sides for macro- and micronutrients, respectively, in late-season leaves. Based on the relative variation within samples, samples for nutrient analysis of red maple and red maple hybrids should consist of leaves collected from the southeast side of the tree and can consist of samples with or without petioles attached to the lamina.


HortScience ◽  
2014 ◽  
Vol 49 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Renee H. Harkins ◽  
Bernadine C. Strik ◽  
David R. Bryla

A study was conducted in western Oregon to assess the impact of cultivar and weed management strategy on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer. The study was conducted in trailing blackberry (Rubus L. subgenus Rubus Watson) planted in May 2010 and certified organic in May 2012. Treatments included two cultivars, Marion and Black Diamond, each with either no weed control after the first year after planting or with weeds managed by hand-weeding or the use of weed mat. Each treatment was amended with organically approved fertilizers at pre-plant and was drip-fertigated with fish emulsion each spring. Most primocane leaf nutrient concentrations were within the range recommended for blackberry. However, leaf nitrogen (N) was low in ‘Black Diamond’, especially when grown without weed control, whereas leaf boron (B) was low in all treatments. In many cases, leaf nutrient concentrations were affected by cultivar and weed management in both the primocanes and the floricanes. The concentration of several nutrients in the fruit differed between cultivars, including calcium (Ca), magnesium (Mg), sulfur (S), B, and zinc (Zn), but only fruit Ca was affected by weed management and only in ‘Marion’. In this case, fruit Ca was higher when the cultivar was grown with weed mat than with hand-weeding or no weeding. Total biomass production of primocanes increased from an average of 0.3 t·ha−1 dry weight (DW) during the first year after planting to 2.0 t·ha−1 DW the next year. Plants were first cropped the third year after planting and gained an additional 3.3 t·ha−1 DW in total aboveground biomass (primocanes, floricanes, and fruit) by the end of the third season. Fruit DW averaged 1.4 t·ha−1 in non-weeded plots, 1.9 t·ha−1 in hand-weeded plots, and 2.3 t·ha−1 in weed mat plots. Biomass of senesced floricanes (removed after harvest) averaged 3.2 t·ha−1 DW and was similar between cultivars and among the weed management treatments. ‘Marion’ primocanes accumulated a higher content of N, phosphorus (P), potassium (K), Mg, S, iron (Fe), B, copper (Cu), and aluminum (Al) than in ‘Black Diamond’. Weeds, however, reduced nutrient accumulation in the primocanes in both cultivars, and accumulation of nutrients was greater in the floricanes than in the previous year’s primocanes. Total nutrient content declined from June to August in the floricanes, primarily through fruit removal at harvest and senescence of the floricanes after harvest. Depending on the cultivar and weed management strategy, nutrient loss from the fruit and floricanes averaged 34 to 79 kg·ha−1 of N, 5 to 12 kg·ha−1 of P, 36 to 84 kg·ha−1 of K, 23 to 61 kg·ha−1 of Ca, 5 to 15 kg·ha−1 of Mg, 2 to 5 kg·ha−1 of S, 380 to 810 g·ha−1 of Fe, 70 to 300 g·ha−1 of B, 15 to 36 g·ha−1 of Cu, 610 to 1350 g·ha−1 of manganese (Mn), 10 to 260 g·ha−1 of Zn, and 410 to 950 g·ha−1 of Al. Overall, plants generally accumulated (and lost) the most biomass and nutrients with weed mat and the least with no weed control.


Author(s):  
Ravina Pawar ◽  
A. K. Singh ◽  
K. P. Raverkar ◽  
Chiranjeev Kumawat ◽  
Johnson Lakra

An investigation was undertaken to study the effect of micronutrients and sea weed sap on nutrient availability and leaf nutrient concentrations of mango cv. Dashehari in the year 2014-2015. The experiment was conducted in a randomized block design with three replications and ten treatments consisting of various concentrations and combinations of micronutrients, sea weed sap along with recommended dose of fertilizers in sub-tropical region of GBPUA&T, Pantnagar, Uttarakhand, India. The highest available soil nitrogen, phosphorus, potassium (195.51, 74.30 & 218.79 kg ha-1), B, Zn, Fe, Cu and Mn (1.41, 0.85, 16.78, 3.21 and 25.50 ppm) after harvest were observed with the application of RDF + IIHR Mango Special @ 5 g/l (2 sprays at two months before flowering and marble stage). RDF + IIHR Mango Special also increased the nitrogen, phosphorus, potassium (1.88, 0.99, 0.83 %); B, Zn, Fe, Cu and Mn (18.17, 69.29, 199.49, 48.89 and 84.40 ppm) in leaves of mango cv. Dashehari. Foliar application of sea weed sap @ 10% (2 sprays at panicle emergence and marble stage) + RDF + ZnSO4 @ 200 g + CuSO4 @ 100 g + Boric acid @ 100 g (soil application) per plant in basin after harvest, also resulted in enhanced status of nutrients in plants and soil over various treatments followed to RDF + IIHR Mango Special @ 5 g/l foliar application.


Sign in / Sign up

Export Citation Format

Share Document