scholarly journals Growth Responses of Eucalyptus pellita F. Muell Plantations in South Sumatra to Macronutrient Fertilisers Following Several Rotations of Acacia mangium Willd.

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1054 ◽  
Author(s):  
Maydra Alen Inail ◽  
Eko B. Hardiyanto ◽  
Daniel S. Mendham

Eucalyptus pellita has rapidly emerged as the species that has replaced Acacia mangium in broad-scale commercial plantations in Indonesia following widespread losses due to disease and in soils that have suffered a steady decline in phosphorus (P) under plantation forestry. Conversion from a nitrogen (N)-fixing to a non-N fixing species is expected to change the nutrient dynamics and the management required to maximise productivity. In this study in South Sumatra, responses of E. pellita to the application of N, P, potassium (K) and calcium (Ca) fertilisers were assessed at a number of trials on sites with varying site history; A. mangium was planted at one site to compare the species’ responses to N and P. The growth of E. pellita responded significantly (p < 0.01) to P’s application but not to N, K or Ca, with the addition of P increasing the stem volume by 32.6 m3 ha−1 at 3 years of age compared with no addition of P fertiliser; the demand for P in the first two years of growth was, respectively, 4.8 and 6.8 kg ha−1. This positive and large response appears to be because E. pellita has a lower efficiency in its use of P than A. mangium and is, therefore, more responsive than A. mangium to the addition of P. The reason for the lack of response to N remains unclear, although demand for N as well as K and Ca was high. These results suggest that sites recently converted to E. pellita from A. mangium and also new ex-native forest sites will be likely to only respond to P addition and that the response of E. pellita is likely to be greater than for A. mangium to maximise yield. At present, additional N, Ca or K fertilisers are not required, but this may change in the future.

2002 ◽  
Vol 17 (4) ◽  
pp. 209-215 ◽  
Author(s):  
Kevin R. Brown

Abstract The growth of young red alder on Vancouver Island may increase with phosphorus (P) availability. In order to better interpret growth responses in field fertilization trials, this study examined the effects of P additions (10, 100, 200, or 400 kg P/ha) on the growth and nutrient uptake of red alder seedlings grown in outdoor sandbeds for one growing season. Height did not increase with P supply. Stem growth and whole-plant mass increased with P rate from 10 to 100 kg/ha, but did not increase further at greater rates of P addition. Stem volumes, averaged across the P100, P200 and P400 treatments, were 37% greater than in the P10 treatment. Volume and mass did not increase as foliar P concentrations exceeded 2.2 g P/kg. These responses were consistent with data from field trials. Reduced growth in the P10 treatment was not accompanied by significantly reduced foliar P concentrations. Increases in stem volume with P supply were associated with increases in the amount of branching and foliage borne on branches but not with shifts in allocation of dry matter from roots to shoots. West. J. Appl. For. 17(4):209–215.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1186
Author(s):  
Eko Hardiyanto ◽  
Maydra Inail ◽  
E. K. Sadanandan Nambiar

We report on experimental studies conducted in South Sumatra with interrelated objectives to (i) examine the trends in production covering 30 years, including three rotations of Acacia mangium followed by Eucalyptus pellita which replaced A. mangium for managing the widespread threat of diseases; (ii) understand the effects of inter-rotation slash and litter management applied to acacia (legacy effects) on E. pellita growth; (iii) assess the long term changes in the top soil layer arising from above; (iv) evaluate, through a network of experiments, across the landscape, the nature and extent of growth responses to additional phosphorus. This data was also used to explore some of the critical site and stand variables which determine the variations in productivity and responses to management. The current growth rates of E. pellita are lower than those achieved in A. mangium. The management-legacy effects by conserving site resources provides a sustainable base for the growth of E. pellita, but for further increase in productivity, additional management actions are necessary. Changes in soil pH, carbon, N and extractable P were relatively small after four rotations. Supply of P at planting gave wood volume gains at harvest, ranging from 16 to 66% across sites. The plinthite layer in the soil profile was related to productivity, with higher growth rates of E. pellita occurring when the plinthite was at deeper layers. There is much scope for increasing productivity per unit area in this landscape, and available knowledge can be synthesized into a package of best practices for application. Management should aim to improve the quality of inter-rotation management to ensure more than 90% survival, and fast growth rates during the first 2 years. We provide a framework for further research and for refining management to produce the much needed additional domestic wood supply for the local industry.


2021 ◽  
pp. 096703352110079
Author(s):  
Agustan Alwi ◽  
Roger Meder ◽  
Yani Japarudin ◽  
Hazandy A Hamid ◽  
Ruzana Sanusi ◽  
...  

Eucalyptus pellita F. Muell. has become an important tree species in the forest plantations of SE Asia, and in Malaysian Borneo in particular, to replace thousands of hectares of Acacia mangium Willd. which has suffered significant loss caused by Ceratocystis manginecans infection in Sabah, Malaysia. Since its first introduction at a commercial scale in 2012, E. pellita has been planted in many areas in the region. The species replacement requires new silvicultural practices to induce the adaptability of E. pellita to grow in the region and this includes relevant research to optimise such regimes as planting distance, pruning, weeding practices and nutrition regimes. In this present study, the nutritional status of the foliage was investigated with the aim to develop near infrared spectroscopic calibrations that can be used to monitor and quantify nutrient status, particularly total foliar nitrogen (N) and phosphorus (P) in the field. Spectra acquired on fresh foliage in situ on the tree could be used to predict N and P with accuracy suitable for operational decision-making regards fertiliser application. If greater accuracy is required, spectra acquired on dry, milled foliage could be used to predict N and P within a relative error of 10% (R2c, r2CV, RMSEP, RPD = 0.77, 0.71, 0.02 g 100/g, 1.9 for foliar P and = 0.90, 0.88, 0.21 g 100/g, 3.0 for foliar N on dry, milled foliage). The ultimate application of this is in situ nutrient monitoring, particularly to aid longitudinal studies in fertiliser trial plots and forest operations, as the non-destructive nature of NIR spectroscopy would enable regular monitoring of individual leaves over time without the need to destructively sample them. This would aid the temporal and spatial analysis of field data.


2018 ◽  
Vol 130 (1) ◽  
pp. 112 ◽  
Author(s):  
Alison R. Styring ◽  
Joanes Unggang ◽  
Alex Jukie ◽  
Ollince Tateh ◽  
Nyegang Megom ◽  
...  

2000 ◽  
Vol 27 (1) ◽  
pp. 39 ◽  
Author(s):  
Stephen M. Jackson

Trapping data of the mahogany glider, Petaurus gracilis, and the sugar glider, Petaurus breviceps, in sympatry, in north Queensland, were analysed with vegetation variables to determine the habitat relationships of these two species. The study area contained a trapping grid (80 traps) within an area of continuous forest and trapping transects within an adjacent area of fragmented forest (44 traps). The mahogany glider was trapped more often at 43 of the 124 locations (38 in the continuous and 5 in the fragmented forest), with the sugar glider dominant at 46 locations (18 in the continuous forest and 28 in the fragmented forest). The remaining 27 trap locations where gliders were caught did not favour either species. Eight trap locations within riparian rainforest had no captures of either species. The presence of mahogany gliders was significantly correlated with the presence of Corymbia clarksoniana, Eucalyptus platyphylla, the absence of Corymbia intermedia and Acacia mangium, and a small mid and upper canopy cover. In contrast, the presence of sugar gliders was most correlated with a large number of stems. When the presence of the mahogany glider was compared with that of the sugar glider with respect to various habitat variables for the entire study area, the mahogany glider was most associated with the presence of C. clarksoniana, Eucalyptus pellita, Lophostemon suaveolens, Melaleuca dealbata and a reduced lower and upper canopy. In contrast, the sugar glider was most associated with C. intermedia, A. mangium, a large number of potential food species, rainforest species and a dense mid and upper canopy cover.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 435 ◽  
Author(s):  
M. C. L. Todd ◽  
M. A. Adams ◽  
P. F. Grierson

Mine site rehabilitation should aim to establish quickly and maintain the processes of nutrient cycling at rates comparable with, or approaching, those of native forests. Current management strategies for rehabilitating bauxite mines and other mine sites in Australia usually include planting fast-growing understorey species at high densities and applying fertiliser. We provide the first detailed study of nitrogen (N) availability and N transformations (mineralisation/immobilisation) in such rehabilitated mine sites. Mean concentrations of NO3– (0–5 cm) in a chronosequence (7, 13, 22, and 27 years old) of rehabilitated mine sites ranged from 0.5 to 1.3 kg/ha, and NH4+ from 4.0 to 9.5 kg/ha. In burnt and unburnt native jarrah (E. marginata Donn ex. Smith) forests adjacent to the mine site, mean NO3– concentrations in surface soil (0–5 cm) were 0.8 kg/ha (burnt) and 1.1 kg/ha (unburnt), and mean NH4+ concentrations were 6.8 kg/ha (burnt) and 7.8 kg/ha (unburnt). Concentration of NH4+ at 0–5 cm was strongly related to soil water content (R2 = 0.69, P < 0.05) in rehabilitation sites, but not at 5–10 cm depth. Rates of N mineralisation (0–5 cm) in rehabilitation sites ranged from 34 to 52 kg/ha.year, of the same order as rates in native forest soil. In all rehabilitation and native forest sites, rates of N mineralisation were significantly related to rates of N-uptake at both 0–5 and 5–10 cm depth (R2 > 0.63, P < 0.05). Soil C/N ratios (0–5 cm) in rehabilitation sites ranged from 22.4 to 38.8, and in native forests from 35.6 (burnt) to 40.3 (unburnt). Soil C/N ratios increased with depth in both rehabilitation and native forest sites (ranged from 31.2 to 51.6). Availability of water was the major determinant of nitrogen availability in this strongly Mediterranean climate.


Tropics ◽  
2013 ◽  
Vol 22 (2) ◽  
pp. 67-81 ◽  
Author(s):  
Mayumi Sugimoto ◽  
Seiichi Ohta ◽  
Saiffidin Ansori ◽  
Hardjiono Arisman

2020 ◽  
Vol 10 (01) ◽  
pp. 9
Author(s):  
Teddy Kardiansyah ◽  
Susi Sugesty

Industri pulp Indonesia saat ini memiliki masalah dalam penyediaan bahan baku kayu Acacia mangium, karena serangan penyakit tanaman dan hama. Hal ini harus diantisipasi melalui bahan baku alternatif pengganti Acacia mangium, spesies Eucalyptus pellita dipilih karena lebih tahan terhadap hama dan penyakit. Penelitian ini dilakukan untuk mengetahui karakteristik kualitas pulp kraft putih E. Pellita. Penelitian pembuatan pulp kertas dilakukan dengan proses kraft dengan bahan baku A. mangium dan E. pellita. Pemasakan dilakukan dengan variasi alkali aktif 16-20%, sulfiditas 28,7%, pada suhu 165 °C, rasio larutan pemasak terhadap kayu 3,5:1 dan faktor H 1.022. Pemutihan pulp dilakukan dengan proses ECF (Elemental Chlorine Free) dengan tahapan OD0EoD1. Karakteristik pulp kraft hasil pemasakan A. mangium lebih tinggi pada parameter rendemen tersaring, bilangan kappa dan viskositas dibandingkan dengan E. pellita. Penggunaan alkali aktif 16% pada pemasakan A. mangium lebih rendah dari  E. pellita (18%), namun kualitasnya dapat memenuhi spesifikasi kualitas pulp kraft putih sesuai SNI 6107:2015 (Pulp Kraft Putih Kayu daun) pada parameter derajat giling, derajat putih dan sifat fisik.  Karakteristik pulp kraft putih A. mangium lebih tinggi pada parameter derajat giling, derajat putih dan sifat fisik dibandingkan dengan E. pellita. Namun demikian E. pellita berpotensi untuk dikembangkan di Hutan Tanaman Industri sebagai bahan baku pulp.Effect of Active Alkali on Characteristic of Acacia mangium and Eucalyptus pellita Bleached Kraft PulpAbstractThe Indonesian pulp industry currently has problems in supplying Acacia mangium wood raw materials, due to plant disease and pest attacks. This could be anticipated through alternative raw materials to substitute Acacia mangium, the Eucalyptus pellita species chosen because it is more resistant to pests and diseases. This study was conducted to determine the quality characteristics of E. Pellita bleached kraft pulp. The research on making paper pulp using A. mangium and E. pellita was carried out by means of the kraft process. The cooking was carried out with a variation of 16-20% active alkali, 28.7% sulfidity, at a temperature of 165°C, a liquor to wood ratio of  3.5:1 and an H factor of 1.022. The bleaching of the pulp has been carried out using the ECF (Elemental Chlorine Free) process with the OD0EoD1 stage. Characteristics of kraft pulp from A. mangium cooking were higher in the screening yield, kappa number and viscosity compared to E. Pellita. The use of 16% active alkaline in cooking of  A. mangium is lower than E. pellita (18%), but the quality can meet the quality specifications of white kraft pulp according to SNI 6107: 2015 (White Kraft Leaf Wood Pulp) on the parameters of milled degree, whiteness and properties. The characteristics of A. mangium white kraft pulp were higher in parameters of grind degree, whiteness and physical properties compared to E. pellita. However, E. pellita has the potential to be developed in Industrial Plantation Forests as raw material for pulp. 


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 511 ◽  
Author(s):  
Jacob D. Putney ◽  
Douglas A. Maguire

Nitrogen (N) fertilization is a commonly applied silvicultural treatment in intensively managed coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) plantations. Field trials were established in a randomized complete block design by Stimson Lumber Company (Gaston, Oregon), to test the economic viability of N fertilization on their ownership and to better understand Douglas-fir growth responses. The 23 stands comprising the trials were Douglas-fir dominated, had a total age of 16–24 years, had been precommercially thinned, and had a density of 386–1021 trees ha−1. Fertilizer was applied aerially at a rate of 224 kg N ha−1 as urea during the 2009–2010 dormant season. In the dormant season of 2016–2017, seven growing seasons following application, 40 trees were felled and measured with the objective of assessing crown attributes and aboveground allometrics. Branch-level foliage mass equations were developed from 267 subsampled branches and were applied to the 40 felled sample trees on which the basal diameter and height of all live branches were measured, allowing estimation of both the total amount of foliage and its vertical distribution. A right-truncated Weibull distribution was fitted to data, with the truncation point specified as the base of live tree crown. The resulting tree-level parameter estimates were modeled as functions of tree-level variables. Stand-level factors not explicitly measured were captured through the use of linear and nonlinear mixed-effects models with random stand effects. Fertilization resulted in more total crown foliage mass in the middle crown-third and caused a downward shift in the vertical distribution of foliage, with implications for feedback responses in crown development and photosynthetic capacity. Defining the morphological responses of Douglas-fir crowns to nitrogen fertilization provides a framework for studying influences on stand dynamics and should ultimately facilitate improved site-specific predictions of stem-volume growth.


Sign in / Sign up

Export Citation Format

Share Document