scholarly journals In Vitro Interactions between Eutypella parasitica and Some Frequently Isolated Fungi from the Wood of the Dead Branches of Young Sycamore Maple (Acer pseudoplatanus)

Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1072
Author(s):  
Ana Brglez ◽  
Barbara Piškur ◽  
Nikica Ogris

The ten most frequently isolated fungi from the wood of the dead branches of Acer pseudoplatanus L. were tested in dual cultures to evaluate their in vitro antagonistic activity against Eutypella parasitica R.W. Davidson and R.C. Lorenz, the causative agent of a destructive disease of maples in Europe and North America. The tested fungi, treated also as challenge isolates, were Diaporthe sp., Eutypa sp., Eu. maura, E. parasitica, Fusarium avenaceum, Neocucurbitaria acerina, Neonectria sp., Peniophora incarnata, Petrakia irregularis, and Phomopsis pustulata. The antagonistic ability of each challenge isolate was evaluated by calculating an index of antagonism (AI) based on the interaction type in the dual cultures. The results of competition between the fungal isolates were quantified after re-isolations from the interaction zone (s). The dual cultures revealed two main types of competitive interactions: Deadlock, consisting of mutual inhibition after mycelial contact or at a distance, and replacement, reflecting in the inhibition of E. parasitica, followed by partial overgrowth by the replacing fungus. Statistical analysis showed significant differences in average AI and s of challenge isolates between different dual culture assays. Based on the results of the antagonism index, Eutypa sp., Eu. maura, Neonectria sp., and P. incarnata had the highest inhibitory effect on E. parasitica growth and were recognized as the most promising candidates for further biocontrol studies of E. parasitica. The mycelium of E. parasitica at the interaction zones remained mostly viable, except in dual cultures with Eutypa sp., F. avenaceum, and Neonectria sp., where re-isolations did not yield any colony of the E. parasitica isolate. Based on the results, we assume that E. parasitica is a weak competitor, which invests less energy in direct mycelial competition. We discuss the potential of the observed antagonists as a possible biocontrol of Eutypella canker of maple. Nevertheless, additional experiments should be performed for a solid conclusion about competitive ability of E. parasitica and usefulness of antagonists as biocontrol.

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 664
Author(s):  
Matías Olivera ◽  
Ninoska Delgado ◽  
Fabiola Cádiz ◽  
Natalia Riquelme ◽  
Iván Montenegro ◽  
...  

Gray and summer bunch rot are important diseases of table grapes due to the high economic and environmental cost of their control with synthetic fungicides. The ability to produce antifungal compounds against the causal agents Botrytis, Aspergillus, Penicillium, and Rhizopus of two microorganisms isolated from table grapes and identified as Hanseniaspora osmophila and Gluconobacter cerinus was evaluated. In dual cultures, both biocontrol agents (together and separately) inhibited in vitro mycelial growth of these pathogens. To identify the compounds responsible for the inhibitory effect, extractions were carried out with organic solvents from biocontrol agents separately. Through dual cultures with pathogens and pure extracts, only the hexane extract from H. osmophila showed an inhibitory effect against Botrytis cinerea. To further identify these compounds, the direct bioautography technique was used. This technique made it possible to determine the band displaying antifungal activity at Rf = 0.05–0.2. The compounds present in this band were identified by GC-MS and compared to the NIST library. The most abundant compounds, not previously reported, corresponded to alkanes, ketones, alcohols, and terpenoids. H. osmophila and G. cerinus have the potential to control the causal agents of gray and summer bunch rot of table grapes.


2014 ◽  
Vol 40 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Sinar David Granada García ◽  
Antoni Rueda Lorza ◽  
Carlos Alberto Peláez

Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.


2021 ◽  
Vol 24 (2) ◽  
pp. 107-120
Author(s):  
SMN Islam ◽  
SS Siddique ◽  
MZH Chowdhury ◽  
NJ Mishu

A native Trichoderma isolate was collected from the agricultural soil of Gazipur. This isolate was identified as a Trichoderma asperellum through morphology and analysis of internal transcribed spacer (ITS) region of ribosomal RNA gene sequence and reconstruction of the phylogenetic tree. The antagonistic effects of the newly identified T. asperellum isolate were assessed against brinjal bacterial wilt caused by Ralstonia solanacearum both in vitro and in planta. Both qualitative and quantitative bioassays were conducted in vitro. For qualitative tests, dual culture and antibacterial activity were carried out, and pathogen growth was observed visually. The antagonism of T. asperellum cell free culture filtrate on the growth of R. solanacearum was conducted in a quantitative test. Successful antagonism was recorded after both in vitro qualitative tests. In addition, the lowest colony forming unit was recorded in 100% of CFC (2.4±0.51 ×103 cfu/ml) in quantitative test. The T. asperellum inoculated plant showed low disease incidence (13.33%) when seedlings were challenged with R. solanacearum in planta experiment. Disease incidence was 100% for seedlings when treated with only R. solanacearum. The results showed that the isolated and identified T. asperellum isolate suppressed R. solanacearum growth in vitro and protected the seedling from wilting in planta. Therefore, this isolate could be considered as a potential isolate. Ann. Bangladesh Agric. (2020) 24(2) : 107-120


2019 ◽  
Vol 8 (1) ◽  
pp. 65 ◽  
Author(s):  
Lorena Barra-Bucarei ◽  
Andrés France Iglesias ◽  
Macarena Gerding González ◽  
Gonzalo Silva Aguayo ◽  
Jorge Carrasco-Fernández ◽  
...  

Botrytis cinerea causes substantial losses in tomato and chili pepper crops worldwide. Endophytes have shown the potential for the biological control of diseases. The colonization ability of native endophyte strains of Beauveria bassiana and their antifungal effect against B. cinerea were evaluated in Solanaceae crops. Root drenching with B. bassiana was applied, and endophytic colonization capacity in roots, stems, and leaves was determined. The antagonistic activity was evaluated using in vitro dual culture and also plants by drenching the endophyte on the root and by pathogen inoculation in the leaves. Ten native strains were endophytes of tomato, and eight were endophytes of chili pepper. All strains showed significant in vitro antagonism against B. cinerea (30–36%). A high antifungal effect was observed, and strains RGM547 and RGM644 showed the lowest percentage of the surface affected by the pathogen. Native strains of B. bassiana colonized tomato and chili pepper tissues and provided important levels of antagonism against B. cinerea.


2017 ◽  
Vol 57 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Zeinab Fotoohiyan ◽  
Saeed Rezaee ◽  
Gholam Hosein Shahidi Bonjar ◽  
Amir Hossein Mohammadi ◽  
Mohammad Moradi

Abstract Verticillium wilt caused by Verticillium dahliae, is one of the most devastating diseases in pistachio orchards in the world including Iran. In search for an effective non-chemical strategy for the management of this disease, we evaluated the biocontrol potential of Trichoderma harzianum isolates obtained from the rhizosphere of healthy pistachio trees in different locations of the Kerman province of Iran against V. dahliae under laboratory and greenhouse conditions. Dual culture tests in the laboratory were conducted in a completely randomized design using 72 T. harzianum isolates. Twenty isolates showed the highest in vitro antagonistic activity. The results indicated that all 20 isolates were capable of inhibiting the mycelial growth of V. dahliae significantly. Among them, isolates Tr8 and Tr19 were the most effective by 88.89% and 85.12% inhibition, respectively. Extracted cell free metabolites of all effective isolates also inhibited the growth of V. dahliae in the culture medium significantly. According to the results, isolates Tr4 and Tr6 inhibited fungal pathogen growth by 94.94% and 88.15% respectively, through production of non-volatile metabolites. In the evaluation of volatile metabolites, isolates Tr5 and Tr4 were the most effective by 26.27% and 24.49% growth inhibition, respectively. Based on the results of the in vitro experiments, the five most effective isolates were selected for evaluation under greenhouse conditions for their biocontrol potential in controlling Verticillium wilt of pistachio. Results of the greenhouse, (in vivo) experiments were positive and indicated that the occurrence of wilt disease in plants treated with the antagonists alone or in combination with pathogenic fungus was lower than in plants inoculated with pathogen alone. The overall results of this study suggest that Trichoderma fungal antagonist may be an effective biocontrol agent for the control of Verticillium wilt of pistachio.


2021 ◽  
Author(s):  
Hilda Karim ◽  
Andi Asmawati ◽  
Oslan Jumadi

Abstract Tuber rot disease due to phytopathogen Fusarium oxysporum f. sp. cepae (Foc) infection is one of the main factors causing the decreasing amount of global shallot production. This study aims to find bacteria and fungi candidates which have Foc antagonistic activity through in vitro tests using dual culture techniques. A total of five bacterial isolates and three fungal isolates isolated from the rhizosphere of healthy onion plants showed the ability to inhibit Foc growth. B1 and B4 bacterial isolates had an average inhibitory capability of 65.93% and 72.27% respectively. Whereas C1 and C2 fungal isolates have the ability to inhibit the growth of Foc by as much as 74.82% and 67.76% respectively. The four tested microbial isolates were able to significantly inhibit Foc activity in vitro based on the ANOVA test, with values α = 0.05, and n = 3. Molecular analysis based on 16S-rRNA markers showed bacterial isolates B1 and B4 have an evolutionary relationship with B. subtilis. Whereas fungi C1 and C2 have evolutionary relationships with Aspergillus tubingensis and Trichoderma asperellum respectively, based on internal transcribed spacer (ITS) gene markers. The results of this study can be used to develop indigenous microbial consortiums as biological control agents for phytopathogenic fungi Fusarium oxysporum f. sp. cepae (Foc) on shallots.


Author(s):  
Mahbuba Kaniz Hasna ◽  
Md. Abul Kashem ◽  
Farid Ahmed

An in vitro and field experiments for two consecutive years were conducted at Bangladesh Institute of Nuclear Agriculture, Mymensingh, aiming to investigate the efficacy of Trichoderma harzianum against Sclerotium rolfsii causing collar rot disease of soybean and chickpea. In in vitro the antagonistic activity of T. harzianum against S. rolfsii was observed through dual culture. In field experiment Trichoderma was applied as soil treatment and seed treatment. The percent inhibition of S. rolfsii induced by T. harzianum was found upto 78.9% in in vitro. The maximum reduction of collar rot disease incidence over control was 82.4% in soybean and 77.6% in chickpea which was recorded in the plot where T. harzianum was applied in the soil. The highest seed germination: 86.3% in soybean and 84.8% in chickpea, maximum fresh shoot weight: 94.5 g plant-1 in soybean, 62.5 g plant-1 in chickpea, maximum fresh root weight: 10.7 g plant-1 in soybean, 9.3 g plant-1 in chickpea and the highest yield: 2830 kg ha-1 in soybean, 1836 kg ha-1 in chickpea were obtained by the application of Trichoderma in soil. The study indicated that the tested isolate of T. harzianum had potential in controlling collar rot disease of soybean and chickpea. For the reduction of collar rot incidence application of T. harzianum in soil was found more effective than seed treatment. 


2008 ◽  
pp. 135-148 ◽  
Author(s):  
Zlata Klokocar-Smit ◽  
Jelena Levic ◽  
Stevan Masirevic ◽  
Jelica Grozdanovic-Varga ◽  
Mirjana Vasic ◽  
...  

Several species of Fusarium are causal agents of onion rot in field and storage. Most prevalent are F. oxysporum f. sp. cepae and F. solani, and recently F. proliferatum, a toxigenic species. Most frequently isolated fungi in our field experiments were F. solani and F. proliferatum with different pathogenicity. Certain differences in antagonistic activity of Trichoderma asperellum on different isolates of F. proliferatum and F. solani have been found in in vitro study in dual culture, expressed as a slower inhibition of growth of the former, and faster of the latter pathogen. Antagonistic abilities of species from genus Trichoderma (T. asperellum) are important, and have already been exploited in formulated biocontrol products in organic and conventional production, in order to prevent soil borne pathogens inducing fusarium wilt and rot. The importance of preventing onion infection by Fusarium spp., possible mycotoxin producers, has been underlined.


2018 ◽  
Vol 64 (12) ◽  
pp. 1020-1029
Author(s):  
Jishun Li ◽  
Yuanzheng Wu ◽  
Kai Chen ◽  
Yilian Wang ◽  
Jindong Hu ◽  
...  

During a biodiversity survey of Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) in coastal and lake wetlands of China, a new species, Trichoderma cyanodichotomus, was isolated from Dongting Lake wetland of Hunan province. The strain TW21990-1 was characterized as having two types of conidia and producing a distinct blue–green pigment on potato dextrose agar and cornmeal dextrose agar. The taxonomic position was analyzed using three molecular markers, internal transcribed spacer rDNA, translation elongation factor 1-alpha, and RNA polymerase II subunit B, revealing less than 95.0% homology with all known Trichoderma species. The combined phylogenetic tree further identified T. cyanodichotomus as an independent subgroup belonging to Section Pachybasium, with no close relatives. In vitro antagonistic activity by dual-culture assay exhibited broad inhibition against various plant pathogens, including Botryosphaeria dothidea, Pythium aphanidermatum, Rhizoctonia solani, and Verticillium dahliae. In addition, TW21990-1 demonstrated moderate hydrolase activity of cellulase, chitinase, β-1,3-glucanase, and protease, which might be involved in mycoparasitism. Greenhouse experiments showed strong biocontrol effects against tomato damping-off incited by P. aphanidermatum, together with increased seedling height and weight gain. The identification of T. cyanodichotomus will provide useful information for sufficient utilization of fungal resources.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 891
Author(s):  
Mila Santos ◽  
Fernando Diánez ◽  
Alejandro Moreno-Gavíra ◽  
Brenda Sánchez-Montesinos ◽  
Francisco J. Gea

A study was conducted to explore the efficacy of potential biocontrol agent Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within 72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared to the controls for the different pathosystems studied. Based on these results, we conclude that C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly relevant phytopathogens in horticulture.


Sign in / Sign up

Export Citation Format

Share Document