scholarly journals Antagonistic Activity and Characterization of Indigenous Soil Isolates of Bacteria and Fungi Against Onion Wilt Incited by Fusarium sp

Author(s):  
Hilda Karim ◽  
Andi Asmawati ◽  
Oslan Jumadi

Abstract Tuber rot disease due to phytopathogen Fusarium oxysporum f. sp. cepae (Foc) infection is one of the main factors causing the decreasing amount of global shallot production. This study aims to find bacteria and fungi candidates which have Foc antagonistic activity through in vitro tests using dual culture techniques. A total of five bacterial isolates and three fungal isolates isolated from the rhizosphere of healthy onion plants showed the ability to inhibit Foc growth. B1 and B4 bacterial isolates had an average inhibitory capability of 65.93% and 72.27% respectively. Whereas C1 and C2 fungal isolates have the ability to inhibit the growth of Foc by as much as 74.82% and 67.76% respectively. The four tested microbial isolates were able to significantly inhibit Foc activity in vitro based on the ANOVA test, with values α = 0.05, and n = 3. Molecular analysis based on 16S-rRNA markers showed bacterial isolates B1 and B4 have an evolutionary relationship with B. subtilis. Whereas fungi C1 and C2 have evolutionary relationships with Aspergillus tubingensis and Trichoderma asperellum respectively, based on internal transcribed spacer (ITS) gene markers. The results of this study can be used to develop indigenous microbial consortiums as biological control agents for phytopathogenic fungi Fusarium oxysporum f. sp. cepae (Foc) on shallots.

2020 ◽  
Vol 31 (1) ◽  
pp. 48
Author(s):  
NFN Mardhiana ◽  
Muh. Adiwena ◽  
Ankardiansyah Pandu Pradana

<em>Phytopathogenic fungi </em>Fusarium oxysporum<em> causes significant yield losses in various spices plants. The fungus can be controlled with numerous types of antagonistic bacteria. Th</em><em>is study aimed to determine the physiological characteristic and antagonistic properties of the bacterial from the roots of </em>Nepenthes mirabilis<em>, as a biological control </em><em>to </em>F. oxysforum<em>. The study was conducted at the Plant Protection Laboratory, Faculty of Agriculture, the University of Borneo, Tarakan</em><em>, from October to November 2017. Nutrient Agar medium was used to isolate antagonistic bacteria from the roots of </em>N. mirabilis<em>. Biosafety test against plants and mammals were conducted using hypersensitive and hemolysis </em><em>analysis. The bacterial isolates passed from those tests were characterized further for their phenotype and physiological properties as well as their ability to inhibit the growth of </em>F. oxysporum<em> in a dual culture test  in  vitro.  The  results  showed  that  there  were  10  out  of</em><em>26 bacterial isolates originated from </em>N. mirabilis<em> roots that were safe for plants and mammals. </em><em>Physiological tests showed  that four  isolates  could produce the proteolytic enzyme, five isolates produced the chitinolytic enzyme, six isolates were able to dissolve phosphate, and four isolates could produce HCN. Furthermore, three isolates (Mrb2, Mrb6, and Mrb16) showed inhibitory activity against </em>Fusarium<em> spp. There were differences in the phenotype character and physiological activity between the Mrb2, Mrb6, and Mrb16 isolates, but all three have the potential to inhibit </em>F. oxysporum<em>.</em>


2014 ◽  
Vol 70 (6) ◽  
Author(s):  
Allicia Jack ◽  
Kogeethavani Ramachandran

In present study, 26 microbes consisted of 11 fungal isolates and 16 bacterial isolates were screened against blast disease pathogen (Pyricularia oryzae). All isolates were screened in vitro via dual culture bioassay. All fungal isolates collected were isolated from aerobic rice soils and the endophyic bacteria were isolated from the stem of healthy rice plants. Five isolates have been identified to be potential biocontrol agents as they recorded high PIRG (percentage inhibition of radial growth) values of more than 80%. Two isolates were identified as Trichoderma (F15 and F16) while the rest of them were bacteria isolates (I5, I6 and I16). 16S rDNA sequence analysis results showed that all three bacterial isolates were 100% similar to Paenibacillus polymyxa (Gene Bank assession number:  GU332610.1).


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 891
Author(s):  
Mila Santos ◽  
Fernando Diánez ◽  
Alejandro Moreno-Gavíra ◽  
Brenda Sánchez-Montesinos ◽  
Francisco J. Gea

A study was conducted to explore the efficacy of potential biocontrol agent Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within 72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared to the controls for the different pathosystems studied. Based on these results, we conclude that C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly relevant phytopathogens in horticulture.


2019 ◽  
Vol 12 (2) ◽  
pp. 124-132
Author(s):  
Nia Safitri ◽  
Atria Martina ◽  
Rodesia Mustika Roza

Tanaman budi daya merupakan tanaman yang sering diserang oleh cendawan pathogen, sehingga mengakibatkan penurunan populasi dan produksi tanaman. Pengendalian hayati dengan cendawan antagonis merupakan salah satu metode yang paling efektif dan lebih ramah lingkungan dalam menekan pertumbuhan patogen tanaman. Penelitian ini bertujuan untuk menguji aktivitas antagonis cendawan isolat lokal Riau terhadap beberapa cendawan patogen pada tanaman budi daya. Uji antagonis dilakukan secara in vitro dengan metode dual culture menggunakan lima belas cendawan isolat lokal Riau terhadap Fusarium oxysporum f.sp. lycopersici, Ganoderma philippii, G. boninense, Rigidoporus microporus dan Colletotrichum sansevieria. Hasil penelitian menunjukkan bahwa Trichoderma sp. PNE 4 memiliki aktivitas antagonis tertinggi dan isolat FER C1 serta isolat LLB07 hanya memiliki aktivitas antagonis yang tinggi dalam menekan pertumbuhan cendawan patogen. Trichoderma sp. PNE 4 mampu menghambat pertumbuhan miselium F. oxysporum sebesar 85,30%, G. Philippii (100%), G. boninense (100%), dan C. sansevieria (100%). Isolat FER C1 hanya menghambat R. Microporus (50,39%) dan isolat LLB07 menghambat G. philippii (52,20%). Trichoderma sp. PNE 4 merupakan cendawan uji yang terpilih sebagai cendawan antagonis, karena memiliki kemampuan daya hambat  >70%.Abstract Cultivated plants are often attacked by pathogenic fungi resulting in a decline of population and crop production. Biocontrol with antagonistic fungi is one of the most effective and environmentally friendly methods in suppressing the growth of plant pathogens. This study aims to examine the antagonistic activity of local isolates fungi Riau against some pathogenic fungi on cultivated plants. The antagonistic test was performed in vitro by dual culture method using fifteen local isolates fungal Riau against Fusarium oxysporum f.sp. lycopersici, Ganoderma philippii, G. boninense, Rigidoporus microporus and Colletotrichum sansevieria. The results showed that Trichoderma sp. PNE 4 isolate exhibited highest activites and  FER C1 and LLB07 isolates exhibited high activities suppressed the growth of the fungal pathogen. Trichoderma sp. PNE 4 isolate inhibited mycelial growth F. oxysporum (85.30%), G. philippii (100%), G. boninense (100%) and C. sansevieria (100%). FER C1 isolate only inhibited R. microporus (50.39%), and LLB07 isolate inhibited G. philippii (52.20%). Trichoderma sp. PNE 4 isolate is test isolates as fungal antagonistic.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2436
Author(s):  
Marika Pellegrini ◽  
Claudia Ercole ◽  
Carmelo Gianchino ◽  
Matteo Bernardi ◽  
Loretta Pace ◽  
...  

Industrial hemp (Cannabis sativa L.) is a multipurpose plant used in several fields. Several phytopathogens attack hemp crops. Fusarium oxysporum is a common fungal pathogen that causes wilt disease in nurseries and in field cultivation and causes high losses. In the present study, a pathogenic strain belonging to F. oxysporum f. sp. cannabis was isolated from a plant showing Fusarium wilt. After isolation, identification was conducted based on morphological and molecular characterizations and pathogenicity tests. Selected plant growth-promoting bacteria with interesting biocontrol properties—Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Burkholderia ambifaria—were tested against this pathogen. In vitro antagonistic activity was determined by the dual culture method. Effective strains (in vitro inhibition > of 50%) G. diazotrophicus, H. seropedicae and B. ambifaria were combined in a consortium and screened for in planta antagonistic activity in pre-emergence (before germination) and post-emergence (after germination). The consortium counteracted Fusarium infection both in pre-emergence and post-emergence. Our preliminary results show that the selected consortium could be further investigated as an effective biocontrol agent for the management of this pathogen.


2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Rury Eryna Putri ◽  
Nisa Rachmania Mubarik ◽  
Laksmi Ambarsari ◽  
Aris Tri Wahyudi

Abstract. Putri RE, Mubarik NR, Ambarsari L, Wahyudi AT. 2021. Antagonistic activity of glucanolytic bacteria Bacillus subtilis W3.15 against Fusarium oxysporum and its enzyme characterization. Biodiversitas 22: 4067-4077. Biocontrol of Fusarium oxysporum, a phytopathogenic fungus that causes plant wilt can be approached with cell-wall degrading enzymes such as ?-glucanase. The aim of this study was to evaluate the prospective ability in glucanase production from several soil bacterial isolates and to characterize its ?-glucanase activity of ammonium sulfate precipitation, and to determine its antifungal activity against F. oxysporum in vitro. Twenty bacterial isolates were screened qualitatively and quantitatively as ?-glucanase producers. The results showed that the prospective isolate W3.15 can produce ?-glucanase on glucan agar as the selection medium. From 16S rRNA sequences identification, the isolate belongs to the genus Bacillus, closely related to Bacillus subtilis. The enzyme activity of the ammonium sulfate fraction of isolate W3.15 is optimum at a pH of 7 and temperature range of 60-80oC. B. subtilis W3.15 exhibits high inhibition against the mycelial growth of F. oxysporum and significantly reduced fungal biomass.


2014 ◽  
Vol 40 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Sinar David Granada García ◽  
Antoni Rueda Lorza ◽  
Carlos Alberto Peláez

Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Khanh Duy Le ◽  
Jeun Kim ◽  
Hoa Thi Nguyen ◽  
Nan Hee Yu ◽  
Ae Ran Park ◽  
...  

Plant bacterial and fungal diseases cause significant agricultural losses and need to be controlled. Beneficial bacteria are promising candidates for controlling these diseases. In this study, Streptomyces sp. JCK-6131 exhibited broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In vitro assays showed that the fermentation filtrate of JCK-6131 inhibited the growth of bacteria and fungi with minimum concentration inhibitory (MIC) values of 0.31–10% and 0.31–1.25%, respectively. In the in vivo experiments, treatment with JCK-6131 effectively suppressed the development of apple fire blight, tomato bacterial wilt, and cucumber Fusarium wilt in a dose-dependent manner. RP-HPLC and ESI-MS/MS analyses indicated that JCK-6131 can produce several antimicrobial compounds, three of which were identified as streptothricin E acid, streptothricin D, and 12-carbamoyl streptothricin D. In addition, the disease control efficacy of the foliar application of JCK-6131 against tomato bacterial wilt was similar to that of the soil drench application, indicating that JCK-6131 could enhance defense resistance in plants. Molecular studies on tomato plants showed that JCK-6131 treatment induced the expression of the pathogenesis-related (PR) genes PR1, PR3, PR5, and PR12, suggesting the simultaneous activation of the salicylate (SA) and jasmonate (JA) signaling pathways. The transcription levels of PR genes increased earlier and were higher in treated plants than in untreated plants following Ralstonia solanacearum infection. These results indicate that Streptomyces sp. JCK-6131 can effectively control various plant bacterial and fungal diseases via two distinct mechanisms of antibiosis and induced resistance.


Sign in / Sign up

Export Citation Format

Share Document