scholarly journals Counter-Intuitive Response to Water Limitation in a Southern European Provenance of Frangula alnus Mill. in a Common Garden Experiment

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1186
Author(s):  
Kristine Vander Mijnsbrugge ◽  
Lise De Clerck ◽  
Nele Van der Schueren ◽  
Stefaan Moreels ◽  
Amy Lauwers ◽  
...  

Climate change will intensify drought periods during the growing season in Western Europe. We mimicked this prediction by withholding water in summer from young rooted cuttings of Frangula alnus Mill., a common shrub species, originating from different latitudes in Europe (Italy, Belgium and Sweden) and growing in a common garden environment in Belgium. We followed the responses to the drought up to two years after the treatment. Counter-intuitively, the Italian provenance displayed earlier symptoms and stronger effects of water limitation than the other two provenances. A putative higher transpiration in this provenance could be suggested based on a relative larger shoot growth, larger leaves and a higher stomatal density. After the post-drought re-watering, the droughted plants of the Italian provenance entered leaf senescence later than the control plants, likely as a compensation mechanism for the lost growing time. Bud burst in the first year after the drought treatment and leaf senescence in the next autumn were both advanced in the drought treated group when compared with the control plants. Bud burst in the second year after the drought treatment did not display any differentiation anymore between control and drought treated plants. Growth traits also displayed legacies of the water limitation. For example, the drought treated plants showed a lower number of reshoots upon pruning in the year after the drought treatment. Our results suggest that assisted migration from southern Europe to western Europe as a climate change adaptation strategy might not always follow the expected patterns.

2019 ◽  
Vol 39 (10) ◽  
pp. 1736-1749 ◽  
Author(s):  
José M Torres-Ruiz ◽  
Antoine Kremer ◽  
Madeline R Carins Murphy ◽  
Tim Brodribb ◽  
Laurent J Lamarque ◽  
...  

Abstract The vulnerability of forest species and tree populations to climate change is related to the exposure of the ecosystem to extreme climatic conditions and to the adaptive capacity of the population to cope with those conditions. Adaptive capacity is a relatively under-researched topic within the forest science community, and there is an urgent need to understand to what extent particular combinations of traits have been shaped by natural selection under climatic gradients, potentially resulting in adaptive multi-trait associations. Thus, our aim was to quantify genetic variation in several leaf and woody traits that may contribute to multi-trait associations in which intra-specific variation could represent a source for species adaptation to climate change. A multi-trait approach was performed using nine Quercus petraea provenances originating from different locations that cover most of the species’ distribution range over Europe and that were grown in a common garden. Multiple adaptive differences were observed between oak provenances but also some evolutionary stasis. In addition, our results revealed higher genetic differentiation in traits related to phenology and growth than in those related to xylem anatomy, physiology and hydraulics, for which no genetic differentiation was observed. The multiple associations between those traits and climate variables resulting from multivariate and path analyses suggest a multi-trait association largely involving phenological and growth traits for Q. petraea.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Kristine Vander Mijnsbrugge ◽  
Jessa May Malanguis ◽  
Stefaan Moreels ◽  
Arion Turcsán ◽  
Nele Van der Schueren ◽  
...  

Future predictions of forest ecosystem responses are a challenge, as global temperatures will further rise in the coming decades at an unprecedented rate. The effect of elevated temperature on growth performance and phenology of three Prunus spinosa L. provenances (originating from Belgium, Spain, and Sweden) in a common garden environment was investigated. One-year-old seedlings were grown in greenhouse conditions and exposed to ambient and elevated temperatures in the spring (on average 5.6 °C difference) and in the late summer/autumn of 2018 (on average 1.9 °C difference), while they were kept hydrated, in a factorial design. In the following years, all plants experienced the same growing conditions. Bud burst, leaf senescence, height, and diameter growth were recorded. Height and radial growth were not affected in the year of the treatments (2018) but were enhanced the year after (2019), whereas phenological responses depended on the temperature treatments in the year of the treatments (2018) with little carry-over effects in the succeeding years. Spring warming enhanced more height growth in the succeeding year, whereas summer/autumn warming stimulated more radial growth. Spring warming advanced bud burst and shortened the leaf opening process whereas summer/autumn warming delayed leaf senescence and enlarged the duration of this phenophase. These results can help predict the putative shifts in species composition of future forests and woody landscape elements.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 293 ◽  
Author(s):  
Kristine Vander Mijnsbrugge ◽  
Astrid Janssens

Phenology in perennial plants implies the temporal occurrence of biological events throughout the year. Heritable phenotypic plasticity in the timing of the phenophases can be of importance in the adaptation of woody species to a quickly changing environment. We observed the timing of bud burst, flower opening, leaf senescence and leaf fall in two successive years in a common garden of Crataegus monogyna Jacq. in Belgium, consisting of six local and five non-local provenances. Data were processed with cumulative logistic mixed models. Strong auto-correlation was present among the spring phenophases as well as among the autumnal phenophases, with spring phenophases being negatively correlated with fall phenophases. The strongest between-provenance differentiation was found for the timing of bud burst in spring, followed by flower opening and finally by leaf senescence and leaf fall. Warmer spring temperatures in March 2017 advanced the timing of bud burst, and to a lesser extent of flower opening, in all provenances compared to 2016. However, the advancement was non-linear among the provenances, with the lower latitude provenances being relatively less early and the higher elevation provenances being more late than the local provenances in this year. It can be hypothesized that non-local provenances display larger temporal phenotypic plastic responses in the timing of their spring phenophases compared to local provenances when temperatures in the common garden deviate more from their home-sites.


2019 ◽  
Author(s):  
Homero Gárate-Escamilla ◽  
Craig C. Brelsford ◽  
Arndt Hampe ◽  
T. Matthew Robson ◽  
Marta Benito Garzón

AbstractOne of the most widespread consequences of climate change is the disruption of trees’ phenological cycles. The extent to which tree phenology varies with local climate is largely genetically determined, and while a combination of temperature and photoperiodic cues are typically found to trigger bud burst (BB) in spring, it has proven harder to identify the main cues driving leaf senescence (LS) in autumn. We used 925 individual field-observations of BB and LS from six Fagus sylvatica provenances, covering the range of environmental conditions found across the species distribution, to: (i) estimate the dates of BB and LS of these provenances; (ii) assess the main drivers of LS; and (iii) predict the likely variation in the growing season length (GSL; defined by BB and LS timing) across populations under current and future climate scenarios. To this end, we first calibrated linear mixed-effects models for LS as a function of temperature, insolation and BB date. Secondly, we calculated the GSL for each provenance as the number of days between BB and LS. We found that: i) there were larger differences among provenances in the date of LS than in the date of BB; ii) the temperature through September, October and November was the main determinant of LS in beech, although covariation of temperature with daily insolation and precipitation-related variables suggests that all three variables may affect LS timing; and iii) GSL was predicted to increase in northern beech provenances and to shrink in populations from the core and the southern range under climate change. Consequently, the large differences in GSL across beech range in the present climate are likely to decrease under future climates where rising temperatures will alter the relationship between BB and LS, with northern populations increasing productivity by extending their growing season to take advantage of warmer conditions.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Agata Keller ◽  
Somsubhra Chattopadhyay ◽  
Mikołaj Piniewski

Abstract Background Flow variability is considered a fundamental factor affecting riverine biota. Any alterations to flow regime can influence freshwater organisms, and this process is expected to change with the projected climate change. This systematic map, therefore, aims at investigating the impacts of natural (resulting from climatic variability), anthropogenic (resulting from direct human pressure), and climate change-induced flow variability on fish and macroinvertebrates of temperate floodplain rivers in Central and Western Europe. Particular focus will be placed on the effects of extreme low and high discharges. These rare events are known to regulate population size and taxonomic diversity. Methods All studies investigating the effects of flow variability on metrics concerning freshwater fish and macroinvertebrates will be considered in the map, particularly metrics such as: abundance, density, diversity, growth, migration, recruitment, reproduction, survival, or their substitutes, such as biomonitoring indices. Relevant flow variability will reflect (1) anthropogenic causes: dams, reservoirs, hydroelectric facilities, locks, levees, water abstraction, water diversion, land-use changes, road culverts; (2) natural causes: floods, droughts, seasonal changes; or (3) climate change. Geographically, the map will cover the ecoregion of Central and Western Europe, focusing on its major habitat type, namely “temperate floodplain rivers and wetlands”. The review will employ search engines and specialist websites, and cover primary and grey literature. No date, language, or document type restrictions will be applied in the search strategy. We expect the results to be primarily in English, although evidence (meeting all eligibility criteria) from other languages within the study area will also be included. We will also contact relevant stakeholders and announce an open call for additional information. Eligibility screening will be conducted at two levels: title and abstract, and full text. From eligible studies the following information will be extracted: the cause of flow variability, location, type of study, outcomes, etc. A searchable database containing extracted data will be developed and provided as supplementary material to the map report. The final narrative will describe the quantity and key characteristics of the available evidence, and identify knowledge gaps and knowledge clusters, i.e. subtopics sufficiently covered by existing studies allowing full systematic review and meta-analysis.


2021 ◽  
Author(s):  
Franziska Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

<p>Terrestrial ecosystems are intimately linked with the global climate system, but their response to ongoing and future anthropogenic climate change remains poorly understood. Reconstructing the response of terrestrial ecosystem processes over past periods of rapid and substantial climate change can serve as a tool to better constrain the sensitivity in the ecosystem-climate response.</p><p>In this talk, we will present a new reconstruction of soil respiration in the temperate region of Western Europe based on speleothem carbon isotopes (δ<sup>13</sup>C). Soil respiration remains poorly constrained over past climatic transitions, but is critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Our study builds upon two decades of speleothem research in Western Europe, which has shown clear correlation between δ<sup>13</sup>C and regional temperature reconstructions during the last glacial and the deglaciation, with exceptional regional coherency in timing, amplitude, and absolute δ<sup>13</sup>C variation. By combining innovative multi-proxy geochemical analysis (δ<sup>13</sup>C, Ca isotopes, and radiocarbon) on three speleothems from Northern Spain, and quantitative forward modelling of processes in soil, karst, and cave, we show how deglacial variability in speleothem δ<sup>13</sup>C is best explained by increasing soil respiration. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (open vs closed system, using the radiocarbon reservoir effect) from the speleothem δ<sup>13</sup>C signal to derive changes in respired δ<sup>13</sup>C over time. Our approach allows us to estimate the temperature sensitivity of soil respiration (Q<sub>10</sub>), which is higher than current measurements, suggesting that part of the speleothem signal may be related to a change in the composition of the soil respired δ<sup>13</sup>C. This is likely related to changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.</p><p>These results highlight the exciting possibilities speleothems offer as a coupled archive for quantitative proxy-based reconstructions of climate and ecosystem conditions.</p>


2013 ◽  
Vol 17 (10) ◽  
pp. 3841-3852 ◽  
Author(s):  
D. Gerten

Abstract. This paper argues that the interplay of water, carbon and vegetation dynamics fundamentally links some global trends in the current and conceivable future Anthropocene, such as cropland expansion, freshwater use, and climate change and its impacts. Based on a review of recent literature including geographically explicit simulation studies with the process-based LPJmL global biosphere model, it demonstrates that the connectivity of water and vegetation dynamics is vital for water security, food security and (terrestrial) ecosystem dynamics alike. The water limitation of net primary production of both natural and agricultural plants – already pronounced in many regions – is shown to increase in many places under projected climate change, though this development is partially offset by water-saving direct CO2 effects. Natural vegetation can to some degree adapt dynamically to higher water limitation, but agricultural crops usually require some form of active management to overcome it – among them irrigation, soil conservation and eventually shifts of cropland to areas that are less water-limited due to more favourable climatic conditions. While crucial to secure food production for a growing world population, such human interventions in water–vegetation systems have, as also shown, repercussions on the water cycle. Indeed, land use changes are shown to be the second-most important influence on the terrestrial water balance in recent times. Furthermore, climate change (warming and precipitation changes) will in many regions increase irrigation demand and decrease water availability, impeding rainfed and irrigated food production (if not CO2 effects counterbalance this impact – which is unlikely at least in poorly managed systems). Drawing from these exemplary investigations, some research perspectives on how to further improve our knowledge of human–water–vegetation interactions in the Anthropocene are outlined.


2018 ◽  
Vol 18 (2) ◽  
pp. 62-65 ◽  
Author(s):  
Grigory Potapov ◽  
Yulia Kolosova ◽  
Alisa Vlasova

This article presents the results of research focussed on the local bumblebee fauna in the southwest of the Kola Peninsula (near the town of Kandalaksha). In general, if we include the published data, the local fauna have 16 species of bumblebees. Among the species of the present study, the recent record for this region isBombuswurfleniiRadoszkowski, 1860. This species was previously unknown in the European North of Russia. It is typical for mountain ecosystems in Europe (Scandinavia, the mountains of Central and Western Europe, the Balkans, Northern Turkey and the Caucasus). We assume that the record ofB.wurfleniion the Kola Peninsula is the recent appearance of this species in the region. One of the possible reasons for the expansion of this species is climate change. Other species of bumblebees in the local fauna are typical for the region. The species present wide ranges, i.e., Transpalaearctic, Holarctic and one species of West-Central Palaearctic. In the outskirts of Kandalaksha, there are 2 species (B.distinguendusMorawitz, 1869 andB.veteranus(Fabricius, 1793)) which belong to the group of meadow species according to their habitat preference. They are not common for the taiga habitats in the European North of Russia. We can explain their presence in the local fauna by noting the presence of anthropogenic meadow habitats in the studied area.


Author(s):  
Oleg Adamenko ◽  
Yaroslav Adamenko ◽  
Kateryna Radlovska ◽  

Paleontological location of the Pleistocene fauna of hairy rhinos and mammoths near the village. Starunya Bogorodchany district of Ivano-Frankivsk region (Prykarpathian, Ukraine) is considered as a paleoclimatic rapper of global changes and a stratigraphic "bridge" linking stratigraphic patterns of the Upper Pleistocene of Western Europe and the plain territory of Ukraine. This is important for the reconstruction of global climate change and the transformation of natural and man-made geosystems.


Sign in / Sign up

Export Citation Format

Share Document