scholarly journals Accounting for Greenhouse Gas Emissions from Forest Edge Degradation: Gold Mining in Guyana as a Case Study

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1307
Author(s):  
Sandra Brown ◽  
Abu R. J. Mahmood ◽  
Katherine M. Goslee ◽  
Timothy R. H. Pearson ◽  
Hansrajie Sukhdeo ◽  
...  

Background and Methods: Degradation of forests in developing countries results from multiple activities and is perceived to be a key source of greenhouse gas emissions, yet there are not reliable methodologies to measure and monitor emissions from all degrading activities. Therefore, there is limited knowledge of the actual extent of emissions from forest degradation. Degradation can be either in the forest interior, with a repeatable defined pattern within areas of forest, as with timber harvest, or on the forest edge and immediately bounding areas of deforestation. Forest edge degradation is especially challenging to capture with remote sensing or to predict from proxy factors. This paper addresses forest edge degradation and: (1) proposes a low cost methodology for assessing forest edge degradation surrounding deforestation; (2) using the method, provides estimates of gross carbon emissions from forest degradation surrounding and caused by alluvial mining in Guyana, and (3) compares emissions from mining degradation with other sources of forest greenhouse gas emissions. To estimate carbon emissions from forest degradation associated with mining in Guyana, 100 m buffers were located around polygons pre-mapped as mining deforestation, and within these buffers rectangular transects were established. Researchers collected ground data to produce estimates of the biomass damaged as a result of mining activities to apply to the buffer area around the mining deforestation. Results: The proposed method to estimate emissions from forest edge degradation was successfully piloted in Guyana, where 61% of the transects lost 10 Mg C ha−1 or less in trees from mining damage and 46% of these transects lost 1 Mg C ha−1 or less. Seventy percent of the damaged stems and 60% of carbon loss occurred in the first 50 m of the transects. The median loss in carbon stock from mining damage was 2.2 Mg C ha−1 (95% confidence interval: 0.0–10.2 Mg C ha−1). The carbon loss from mining degradation represented 1.0% of mean total aboveground carbon stocks, with emissions from mining degradation equivalent to ~2% of all emissions from forest change in Guyana. Conclusions: Gross carbon emissions from forest degradation around mining sites are of little significance regardless of persistence and potential forest recovery. The development of cost- and time-effective buffers around deforestation provides a sound approach to estimating carbon emissions from forest degradation adjacent to deforestation including surrounding mining. This simple approach provides a low-cost method that can be replicated anywhere to derive forest degradation estimates.

2021 ◽  
Vol 17 (1) ◽  
pp. 1-16
Author(s):  
Asim Hasan ◽  
Rahil Akhtar Usmani

Rising greenhouse gas emissions is an important issue of the current time. India’s massive greenhouse gas emissions is ranked third globally. The escalating energy demand in the country has opened the gateway for further increase in emissions. Recent studies suggest strong nexus between energy consumption, economic growth, and carbon emissions. This study has the objective to empirically test the aforementioned interdependencies. The co-integration test and multivariate vector error correction model (VECM) are used for the analysis and the Granger Causality test is used to establish the direction of causality. The time-series data for the period of 1971–2011 is used for the analysis. The results of the study confirm strong co-integration between variables. The causality results show that economic growth exerts a causal influence on carbon emissions, energy consumption exerts a causal influence on economic growth, and carbon emissions exert a causal influence on economic growth. Based on the results, the study suggests a policy that focuses on energy conservation and gradual replacement of fossil fuels with renewable energy sources, which would be beneficial for the environment and the society.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2753
Author(s):  
Rok Gomilšek ◽  
Lidija Čuček ◽  
Marko Homšak ◽  
Raymond R. Tan ◽  
Zdravko Kravanja

The production of primary aluminum is an energy-intensive industry which produces large amounts of direct and indirect greenhouse gas emissions, especially from electricity consumption. Carbon Emissions Constrained Energy Planning proved to be an efficient tool for reducing energy-related greenhouse gas emissions. This study focuses on energy planning constrained by CO2 emissions and determines the required amount of CO2 emissions from electricity sources in order to meet specified CO2 emission benchmark. The study is demonstrated on and applied to specific aluminum products, aluminum slugs and aluminum evaporator panels. Three different approaches of energy planning are considered: (i) an insight-based, graphical targeting approach, (ii) an algebraic targeting approach of cascade analysis, and (iii) an optimization-based approach, using a transportation model. The results of the three approaches show that approximately 2.15 MWh of fossil energy source should be replaced with a zero-carbon or 2.22 MWh with a low-carbon energy source to satisfy the benchmark of CO2 emissions to produce 1 t of aluminum slug; however, this substitution results in higher costs. This study is the first of its kind demonstrated on and applied to specific aluminum products, and represents a step forward in the development of more sustainable practices in this field.


Buildings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 227 ◽  
Author(s):  
Udara Willhelm Abeydeera ◽  
Karunasena

The need to mitigate climate change has become a major global concern, and greenhouse gas emissions are a major cause of global climate change. Therefore, the need to curb greenhouse gas emissions has been well recognized by global researchers, policymakers and academics. Carbon emissions of hotel operations have seized the attention of global researchers. However, carbon emissions of the hotels in developing countries remain to be a less explored domain. Therefore, carbon emissions of Sri Lankan hotels were explored using a case study approach. Five hotels in the Colombo suburb were explored, which revealed that each hotel released more than 7000 tons of carbon annually. Results further indicated the use of purchased electricity as the dominant source of carbon emissions. Emissions caused by transport activities were not included in the calculations due to the unavailability of data. Recommendations were made to overcome the issues identified during data collection as well as to reduce the carbon emissions from hotel operations. Wider adoption of the methodology used in this research will benefit the hotels to keep track of the carbon emissions using a systematic approach.


2019 ◽  
Vol 11 (18) ◽  
pp. 5027 ◽  
Author(s):  
Shen ◽  
Shen ◽  
Yang

The increase in carbon emissions is considered one of the major causes of global warming and climate change. To reduce the potential environmental and economic threat from such greenhouse gas emissions, governments must formulate policies related to carbon emissions. Most economists favor the carbon tax as an approach to reduce greenhouse gas emissions. This market-based approach is expected to inevitably affect enterprises’ operating activities such as production, inventory, and equipment investment. Therefore, in this study, we investigate a production inventory model for deteriorating items under a carbon tax policy and collaborative preservation technology investment from the perspective of supply chain integration. Our main purpose is to determine the optimal production, delivery, ordering, and investment policies for the buyer and vendor that maximize the joint total profit per unit time in consideration of the carbon tax policy. We present several numerical examples to demonstrate the solution procedures, and we conduct sensitivity analyses of the optimal solutions with respect to major parameters for identifying several managerial implications that provide a useful decision tool for the relevant managers. We hope that the study results assist government organizations in selecting a more appropriate carbon emissions policy for the carbon reduction trend.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 337 ◽  
Author(s):  
John Freebairn

Arguments for a portfolio of price, regulation and subsidy policy interventions to reduce the production and consumption of greenhouse gas emissions are presented. The operation and effects of each intervention are described and compared. A combination of different sets of market failures across the many potential decision changes available to producers and consumers to reduce emissions and different properties of the mitigation instruments support a portfolio approach to reduce emissions at a low cost.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 194 ◽  
Author(s):  
Indroneil Ganguly ◽  
Francesca Pierobon ◽  
Edie Sonne Hall

Similar to standing trees in the forests, wood products play an important role in enhancing the global sequestered carbon pool, by retaining the atmospheric carbon in a sequestered form for the duration of the functional life of the wood products. This study uses a temporal radiative forcing analysis along with the functional half-life of different wood products to evaluate the impacts of wood products on global warming, including carbon storage and life cycle greenhouse gas production/extraction emissions. The methodology is applied to Washington State’s aboveground biomass and timber harvest data, and to the State’s comprehensive wood products mix. A moderate harvest rate simulation within Washington Biomass Calculator is used to estimate state harvest level, and statewide wood products manufacturing data is used for developing wood product mix estimates. Using this method, we estimate that the temporal carbon storage leads to a global warming mitigation benefit equivalent to 4.3 million tCO2eq. Even after factoring in the greenhouse gas emissions associated with the harvest operations and wood products manufacturing processes, within the temporal model, the results show a net beneficial impact of approximately 1.7 million tCO2eq, on an annual basis. It can further be noted that Washington State’s annual biomass growth in its private forests exceeds its annual harvest, by a significant margin. This net yearly accumulation of biomass in the State’s private forests leads to additional global warming mitigation benefits equivalent to 7.4 million tCO2eq. Based on these results, we conclude that Washington’s private forestry industry is a net global warming mitigator for the State, equivalent to 12% of the State’s greenhouse gas emissions in 2015.


Sign in / Sign up

Export Citation Format

Share Document