scholarly journals Recovery of Soil-Denitrifying Community along a Chronosequence of Sand-Fixation Forest in a Semi-Arid Desertified Grassland

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 354
Author(s):  
Chengyou Cao ◽  
Ying Zhang ◽  
Zhenbo Cui ◽  
Hailong Li ◽  
Tingting Wang ◽  
...  

Revegetation on moving sand dunes is a widely used approach for restoring the degraded sandy land in northeastern China. The development of sand-fixation forest might improve the structures of soil microbial communities and affect soil N cycle. In the present study, the diversities of nitrite (nirS and nirK) and nitrous oxide (nosZ) reductase genes were investigated under a chronosequence of Caragana microphylla sand-fixation shrub forest (9- and 19-year), adjacent non-vegetated shifting sand-dune, and a natural forest dominated by C. microphylla. The dominant compositions and gene abundance were analyzed by a clone library technique and quantitative polymerase chain reaction, respectively. The compositions and dominant taxa of nirK, nirS, and nosZ communities under forest soil were all similar to those in the shifting sand-dune. However, the three gene abundances all linearly increased across forest age. Clones associated with known denitrifiers carrying nosZ, nirK, or nirS genes, such as members of Pseudomonas, Mesorhizobium, Rhizobium, Rhodopseudomonas, Azospirillum, and Cupriavidus, were detected. These denitrifiers were found to be abundant in soil and dominant in soil denitrification. Soil pH, total N, and available N affected the denitrifying communities by altering the relative abundance of dominant taxa. Overall, although soil attributes and forest age had no significant effects on the dominant constituents of nirK, nirS, and nosZ communities, revegetation on shifting sand-dunes facilitated the quantitative restoration of soil denitrifiers due to the increase in soil nutrients.

2012 ◽  
Vol 58 (No. 1) ◽  
pp. 28-33 ◽  
Author(s):  
J.J. Wang ◽  
X.Y. Li ◽  
A.N. Zhu ◽  
X.K. Zhang ◽  
H.W. Zhang ◽  
...  

The impacts of tillage system (conventional tillage and no-tillage) and residue management (0, 50, and 100%) on soil properties and soil microbial community structure were determined in the Fengqiu State Key Agro-Ecological Experimental Station, North China. The microbial community structure was investigated by phospholipid fatty acid (PLFA) profiles. The results showed that tillage had significant effects on soil properties and soil microbial communities. In no-tillage (NT), microbial biomass carbon (MBC), total N, microbial biomass carbon/soil organic carbon (MBC/SOC), total microbes, and arbuscular mycorrhiza fungi increased, while actinomycetes, G<sup>+</sup>/G<sup>&ndash;</sup> bacteria ratio and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA) decreased, compared with those in conventional tillage (CT). Residue had a significant positive effect on C/N ratio and MUFA/STFA. Canonical correspondence analysis indicated that tillage explained 76.1%, and residue management explained 0.6% of the variations in soil microbial communities, respectively. Soil microbial communities were significantly correlated with MBC, total N, C/N ratio and MBC/SOC. Among the six treatments, NT with 100% residue application obviously improved soil microbiological properties, and could be a proper management practice in the Huang-Huai-Hai Plain of China. &nbsp;


2017 ◽  
Vol 14 (20) ◽  
pp. 4815-4827 ◽  
Author(s):  
Chuang Zhang ◽  
Xin-Yu Zhang ◽  
Hong-Tao Zou ◽  
Liang Kou ◽  
Yang Yang ◽  
...  

Abstract. The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but were negatively correlated with the ammonium contents. The soil enzyme activities varied seasonally, and were highest in March and lowest in October. In contrast, the contents of the microbial PLFA biomarkers were higher in October than in March and June. Ammonium may inhibit the contents of PLFA biomarkers more strongly than nitrate because of acidification. This study has provided useful information about the effects of ammonium and nitrate on soil microbial communities and enzyme activities.


2017 ◽  
Author(s):  
Chuang Zhang ◽  
Xin-Yu Zhang ◽  
Hong-Tao Zou ◽  
Liang Kou ◽  
Yang Yang ◽  
...  

Abstract. The ratios of nitrate to ammonium in wet atmosphere nitrogen (N) deposition compounds were increasing recently. However, the individual effects of nitrate and ammonium deposition on soil microbial communities biomass and enzyme activities are still unclear. We conducted a four-year N addition field experiment to evaluate the responses of soil microbial communities biomass and enzyme activities to ammonium (NH4Cl) and nitrate (NaNO3) additions. Our results showed that (1) the inhibitory effects of ammonium additions on total mass of phospholipid fatty acid (PLFA) were stronger than those of nitrate additions. Both decreased total PLFA mass about 24 % and 11 %, respectively. The inhibitory effects of ammonium additions on gram positive bacteria (G+) and bacteria, fungi, actinomycetes (A), and arbuscular mycorrhizal fungi (AMF) PLFA mass ranged from 14 %–40 %. (2) Both ammonium and nitrate additions inhibited absolute activities of C, N, and P hydrolyses and oxidases, and nitrate additions had stronger inhibition effects on the acid phosphatase (AP) than ammonium additions. Both ammonium and nitrate additions decreased N-acquisition specific enzyme activities (enzyme activities normalized by total PLFA mass) about 21 % or 43 %, respectively. However, ammonium additions increased P-acquisition specific enzyme activities about 19 % comparing to control. (3) Redundancy analysis (RDA) showed that the measured C, N, and P hydrolyses and polyphenol oxidase (PPO) activities were positively correlated with soil pH and ammonium contents, but negatively with nitrate contents; the mass of PLFA biomarkers were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but negatively with ammonium contents. (4) The soil enzyme activities varied seasonally in the order of March > June > October. On the contrary, microbial PLFA mass was higher in October than in March and June. Our results concluded that inhibition of mass of PLFA biomarkers and enzyme activities might be contributed to acidification caused by ammonium addition. Soil absolute enzyme activities were inhibited indirectly by acidification and nitrification, but specific enzyme activities normalized by PLFA were directly affected by N additions. It was meaningful to separate the effects of ammonium and nitrate additions on soil microbial communities and enzyme activities.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Heng Gui ◽  
Kevin Hyde ◽  
Jianchu Xu ◽  
Peter Mortimer

Abstract Although there is a growing amount of evidence that arbuscular mycorrhizal fungi (AMF) influence the decomposition process, the extent of their involvement remains unclear. Therefore, given this knowledge gap, our aim was to test how AMF influence the soil decomposer communities. Dual compartment microcosms, where AMF (Glomus mosseae) were either allowed access (AM+) to or excluded (AM−) from forest soil compartments containing litterbags (leaf litter from Calophyllum polyanthum) were used. The experiment ran for six months, with destructive harvests at 0, 90, 120, 150, and 180 days. For each harvest we measured AMF colonization, soil nutrients, litter mass loss, and microbial biomass (using phospholipid fatty acid analysis (PLFA)). AMF significantly enhanced litter decomposition in the first 5 months, whilst delaying the development of total microbial biomass (represented by total PLFA) from T150 to T180. A significant decline in soil available N was observed through the course of the experiment for both treatments. This study shows that AMF have the capacity to interact with soil microbial communities and inhibit the development of fungal and bacterial groups in the soil at the later stage of the litter decomposition (180 days), whilst enhancing the rates of decomposition.


Soil Research ◽  
2009 ◽  
Vol 47 (5) ◽  
pp. 508 ◽  
Author(s):  
Dejuan Zhi ◽  
Wenbin Nan ◽  
Xiaoxia Ding ◽  
Qinjian Xie ◽  
Hongyu Li

In order to examine how nematodes respond to sand dune succession after stabilisation and reclamation techniques, nematode communities were investigated in sand dunes stabilised for 0, 16, 26, 43, and 51 years in the Tengger Desert, China. Our results revealed that the abundance of nematodes; the proportion of fungivores, omnivores, and predators; maturity index (MI); Shannon index; evenness; and structure index (SI) were affected significantly by the age of stabilised sand dunes, and were correlated with soil physical and chemical properties to different degrees. There were differences in nematode abundance, the proportion of fungivores, Shannon index, and evenness between the shifting dunes and the stabilised dunes, but not within the different succession stages of the stabilised dunes. MI showed a tendency to increase with dune age and SI increased significantly with dune age. MI, and especially SI, could act as robust indicators of stabilised sand dune succession. Redundancy analysis using data on nematode community composition showed that shifting sand dunes were clearly separated from stabilised sand dunes, and younger sand dunes stabilised for 16 and 26 years were also separated from older dunes stabilised for 43 and 51 years to a lesser degree. The results indicated that changes in nematode communities could predict initial sand dune stabilisation due to the planting of artificial vegetation, and clearly differentiate sand dune succession accompanied by vegetation succession and variation of soil properties.


2021 ◽  
Author(s):  
Atiqur Rahman Bora ◽  
Dasi Sunil Babu ◽  
Sontara Kalita ◽  
Sita Chetry

Mikania micrantha is an economically damaging invasive weed, which is widely naturalized in the tropical and subtropical regions of the world. This weed has reported yield losses in various cash crops and plantation crops in South East Asia including India. M. micrantha was found to change the soil microbial communities (bacteria, fungi and actinomycetes) as well as the soil chemical properties. It enhances a significant increase in aerobic bacteria but decreases in anaerobic bacteria due to which infested soil were free from other weeds. Similarly, in soil chemical characteristics significant increases in pH, total N and P were observed and a decrease in soil organic matter where M. micrantha is prevalent. It has allelopathic properties which affect neighbouring crops, weeds, insects and pathogens. This weed produces allelochemicals (phenolics, flavonoids, alkaloids and terpenes) that may be released by volatilization and decomposition of plant debris. It was also found that the aqueous leaf extract of invasive weed M. micrantha inhibited seed germination and seedling growth of various cereals, vegetables, and other plants. A similar result was found in test crops but there was no affected case found in the greenhouse experiment. This review will help the researchers and scientists in understanding the harmful effect of this invasive weed.


2018 ◽  
Vol 8 (2) ◽  
pp. 85
Author(s):  
Haggai Wasserstrom ◽  
Yosef Steinberger

Plant invasions have become one of the biggest threats to natural ecosystems across the globe during the last decade, and there is growing interest in their effect on the native flora and biota in invaded areas. However, little is known about their effect on soil microbial communities, especially non-fungal communities, in harsh environments such as a sand-dune ecosystem. The objective of this study, conducted in the northern Sharon sand-dune area of Israel, was to investigate the influence of the invasive alien plant Heterotheca subaxillaris on a sand-dune microbial community. Soil samples were collected under the canopies of the invasive plant, a native plant (Artemisia monosperma), and from bare areas at two sites, at different distances from the seashore going inland during the wet and dry seasons. MicroRespTM system methodology provided data on microbial biomass, basal respiration, and the community-level physiological profile (CLPP) at the community level, in addition to abiotic components, e.g., soil moisture, organic matter, conductivity, and pH. The microbial community in the soil samples found under the canopy of H. subaxillaris was less active and exhibited significantly lower CLPP, microbial biomass, and basal respiration than in the A. monosperma (native plant) samples. Soil abiotic variables were strongly affected by seasonality, sites, and were related to plant cover and the ecophysiological adaptation of each one. This study emphasizes the threat to soil microbial communities induced by plant invasion, especially in unique and harsh sand-dune ecosystems. This threat might also affect other organisms living in this fragile environment.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8857
Author(s):  
Jiaojiao Deng ◽  
Yongbin Zhou ◽  
Wenxu Zhu ◽  
You Yin

Grazing and litter removal can alter understory structure and composition after afforestation, posing a serious threat to sustainable forest development. Enclosure is considered to be an effective measure to restore degraded forest restoration. However, little is known about the dynamics of soil nutrients and microbial communities during the forest restoration process. In the present study, the effects of Arachis hypogaea (AH), Pinus sylvestris var. mongolica (PSM) and Pinus sylvestris var. mongolica with enclosure (PSME) on soil chemical properties and soil microbial communities were studied in Zhanggutai, Liaoning Province, China. The results showed that PSME could remarkably contribute to improve soil total C, total N and total P compared to PSM and AH. Additionally, PSM could clearly increase the soil bacterial community diversity and fungal Chao1 index and ACE index. Additionally, PSME could further increase soil Chao1 index and ACE index of soil bacteria. Soil total C, total N and available N were the main factors related to soil microbial diversity. Actinobacteria and Ascomycota were the predominant bacterial and fungal phyla, respectively. Specifically, PSME could increase the relative abundances of Actinobacteria, Gemmatimonadetes, Ascomycota and Mortierellomycota and decreased the relative abundances of Acidobacteria, Chloroflexi and Basidiomycota than PSM. PSM and PSME could clearly change soil microbial communities compared with AH and PSME could remarkably shift soil fungal communities than PSM. What’s more, the soil microbial community structure were affected by multiple edaphic chemical parameters. It can be seen that afforestation combined with enclosed management potentially regulate microbial properties through shifting the soil properties. This study can provide new ideas for further understanding the impact of enclosure on PSM and provide theoretical support for the management of PSM.


2019 ◽  
Vol 95 (9) ◽  
Author(s):  
Alica Chroňáková ◽  
Jiří Bárta ◽  
Eva Kaštovská ◽  
Zuzana Urbanová ◽  
Tomáš Picek

ABSTRACT Peatland vegetation is composed mostly of mosses, graminoids and ericoid shrubs, and these have a distinct impact on peat biogeochemistry. We studied variation in soil microbial communities related to natural peatland microhabitats dominated by Sphagnum, cotton-grass and blueberry. We hypothesized that such microhabitats will be occupied by structurally and functionally different microbial communities, which will vary further during the vegetation season due to changes in temperature and photosynthetic activity of plant dominants. This was addressed using amplicon-based sequencing of prokaryotic and fungal rDNA and qPCR with respect to methane-cycling communities. Fungal communities were highly microhabitat-specific, while prokaryotic communities were additionally directed by soil pH and total N content. Seasonal alternations in microbial community composition were less important; however, they influenced the abundance of methane-cycling communities. Cotton-grass and blueberry bacterial communities contained relatively more α-Proteobacteria but less Chloroflexi, Fibrobacteres, Firmicutes, NC10, OD1 and Spirochaetes than in Sphagnum. Methanogens, syntrophic and anaerobic bacteria (i.e. Clostridiales, Bacteroidales, Opitutae, Chloroflexi and Syntrophorhabdaceae) were suppressed in blueberry indicating greater aeration that enhanced abundance of fungi (mainly Archaeorhizomycetes) and resulted in the highest fungi-to-bacteria ratio. Thus, microhabitats dominated by different vascular plants are inhabited by unique microbial communities, contributing greatly to spatial functional diversity within peatlands.


Sign in / Sign up

Export Citation Format

Share Document