scholarly journals Optimum Sensors Allocation for a Forest Fires Monitoring System

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 453
Author(s):  
Beatriz Flamia Azevedo ◽  
Thadeu Brito ◽  
José Lima ◽  
Ana I. Pereira

Every year forest fires destroy millions of hectares of land worldwide. Detecting forest fire ignition in the early stages is fundamental to avoid forest fires catastrophes. In this approach, Wireless Sensor Network is explored to develop a monitoring system to send alert to authorities when a fire ignition is detected. The study of sensors allocation is essential in this type of monitoring system since its performance is directly related to the position of the sensors, which also defines the coverage region. In this paper, a mathematical model is proposed to solve the sensor allocation problem. This model considers the sensor coverage limitation, the distance, and the forest density interference in the sensor reach. A Genetic Algorithm is implemented to solve the optimisation model and minimise the forest fire hazard. The results obtained are promising since the algorithm could allocate the sensor avoiding overlaps and minimising the total fire hazard value for both regions considered.

FLORESTA ◽  
2020 ◽  
Vol 50 (4) ◽  
pp. 1818
Author(s):  
Bruna Kovalsyki ◽  
Alexandre França Tetto ◽  
Antonio Carlos Batista ◽  
Nilton José Sousa ◽  
Marta Regina Barrotto do Carmo ◽  
...  

Forest fire hazard and risk mapping is an essential tool for planning and decision making regarding the prevention and suppression of forest fires,as well as fire management in general, as it allows the spatial visualization of areas with higher and lower ignition probability. This study aimed to develop a forest fire risk zoning map for the Vila Velha State Park and its surroundings (Ponta Grossa, Paraná State, Brazil), for the period of higher incidence of forest fires (from April to September) and for the period of lower incidence (from October to March). The following risk and hazard variables were identified: human presence, usage zones, topographical features, soil coverage and land use and meteorological conditions. Coefficients (0 to 5) reflecting the fire risk or hazard degree were allocated to each variable in order to construct the maps. The integration of these maps, through a weighting model, resulted in the final risk mapping. The very high and extreme risk classes represented about 38% of the area for both periods. The forest fire risk mapping spatially represented the levels of fire risk in the area, allowing the managers to identify the priority sectors for preventive actions in both fire seasons.


2013 ◽  
Vol 694-697 ◽  
pp. 1211-1214 ◽  
Author(s):  
Bi Hua Zhu ◽  
Da Qing Zhu

The forest is considered as a precious and indispensable nature resource, but forest fire which can destroy forest resource safety and threaten human-living environment is considered as one of the severest disasters. How to monitor and collect information of forest fire at any time, it is a difficult problem for Forest Fire Prevention Departments to urgently solve. With the development of sensor technology, MEMS and wireless communications, wireless sensor network (WSN) has wide application in all kinds of fields. In order to prevent forest fire occurrence, this paper designs a monitoring system for forest fires based on wireless sensor network and GPRS network. The system gives the hardware design of wireless sensor nodes and software implementations, and chooses CC2530 to achieve the process of data acquisition and transmission, then sends the data through GPRS module to the remote monitoring center. By means of WSN and GPRS network, the system accomplishes data acquisition and long distance transmission.


2020 ◽  
Vol 3 (1) ◽  
pp. 30
Author(s):  
Luis Santos ◽  
Vasco Lopes ◽  
Cecília Baptista

The number of forest fires ignitions has decreased worldwide, thus observing increased levels of intensity and destruction, endangering urban areas and causing material damages and deaths (Portugal, 2017). Forest fire hazard mapping supported by the surveillance strategy targeted at very susceptible areas with high losses potential are the common tools of fire prevention. Each municipality creates its own Forest Fire Hazard Map, and so it is observed that along the administrative boundaries, discrepancies occur, even when identical types of land use are in place. The evolution of geographic information systems technology sustained by the open-source satellite imagery, along with the innovative Habitat Risk Assessment model of the InVEST software, allowed the creation of an easily applicable trans-administrative boundary fire hazard map, with frequent update capabilities and fully open source. This work considered three municipalities (Tomar, Ourém, and Ferreira do Zêzere) that annually observe various forest fire occurrences. Results enabled the creation of a homogeneous Forest Fire Risk Map, using landuse, slope, road access network, fire ignitions’ history, visualization basins, and the Normalized Difference Vegetation Index (NDVI) as variables. All variables correlate with each other using different weights, in which the different classes of land use are considered as habitats and the remaining variables as fire hazard stressors. The results produce a coherent monthly updated Risk Map, which is an alternative to many risk assessment systems used worldwide.


Forest fires constitute one of the greatest risks for certain ecosystems services. Hence, the location planning of firefighting units based on forest fire hazard is a key point for the immediate containment of fire incidents before they become uncontrollable. The primary aim of the paper is the estimation and finding of the required number and positions (i.e. the exact geographical locations and the respective type of installation – fire hydrant etc.) of fire fleet to fully cover (in terms of travel time) the districts of fire services in Chalkidiki (Greece), taking into account the scalable fire susceptibility. The proposed location plans revealed the fact that most of the regions may adequately respond to the fire vulnerability with the current forces, whereas a few regions clearly need a reinforcement in order to sufficiently cover their territories. A future perspective may be related with the exploration of best locations through the entire study area, merging the current administrative boundaries. One more asset of the project constitutes the flexibility and applicability of the sub-modules to other geographic regions after the necessary adjustments to local conditions.


Author(s):  
Yasushi Okano ◽  
Hidemasa Yamano

The authors have developed a probabilistic risk assessment method on a forest fire as one of external hazards. A hazard curve by heat effect of a forest fire had been obtained by using a logic tree in our previous study. The main application target of the forest fire probabilistic risk assessment is for sodium-cooled fast reactor systems. Databases for a hazard curve evaluation were based on forest fire records, meteorological and vegetation data of a studied area which is near a typical sodium-cooled fast reactor in Japan. There are two intensity parameters of heat effect of a forest fire, namely, reaction intensity and frontal fireline intensity. The hazard curves of these two intensities obtained in our previous study were referred to as “reference case” where constant breakout frequency throughout a day, equal probability distribution for potential breakout points, and firefighting effect on a forest fire were assumed as a priori. The reference reaction intensity and the fireline intensity became 935 kW/m2 and 107 kW/m for the annual exceedance frequency of 10−4/year, respectively. This paper describes a sensitivity study of the hazard curves on condition parameters where frequency/probability variables in the logic tree were varied within respective fluctuation ranges in order to evaluate quantitative effects on the frequency and/or intensity of the hazard curves. As for the forest fire breakout frequency and propagation probability, important variables are “fluctuation of breakout time”, “probability distribution fluctuation of breakout point”, and “firefighting effect on a probability of forest fire arrival at a nuclear power plant (NPP)”. The intensities increase in daytime due to sunshine, and the breakout probability in daytime is statistically 2.8 times higher than a daily average, and that in nighttime is 1/9 of the average. As a result, the hazard curves of the reaction intensity and the fireline intensity increased around 4% and 14% respectively in intensity direction in comparison with those of the reference case. The “fluctuation of breakout time” only affects the intensities of the hazard curves, but not the frequency. As for the “probability distribution fluctuation of breakout point”, one selected point is given higher probability than the other points. The hazard curves vary around +70% to −40% in frequency direction; each breakout point has different distance to the NPP and the forest fire arrival probability varies with a propagation duration. Namely, the longer duration, the higher probability of the extinguishment by firefighting, accordingly the lower probability of the arrival at the NPP. The “probability distribution fluctuation of breakout point” affects only the frequency of the hazard curves, but not the intensities. “Firefighting effect on a probability of forest fire arrival at an NPP” was conservatively assumed for the sensitivity study in which there is no firefighting action outside the NPP, hence all potential forest fires arrive at the NPP. The hazard curves remarkably increase around 40 to 80 times in frequency direction in comparison with those of the reference case. This is because most of forest fires in Japan are extinguished within one to two hours by fire departments, and the conditional probability of a forest fire arrival at an NPP from a potential breakout point with kilometer range distance was evaluated to be very low (i.e. less than a few percent). The “firefighting effect on a probability of forest fire arrival at an NPP” only affects the frequency of the hazard curves, but not the intensity. This study indicated that the most significant factor in the forest fire hazard curve is whether the firefighting action outside an NPP is expected before the arrival at an NPP.


2021 ◽  
Author(s):  
Arnab Laha ◽  
Shobhit Singh ◽  
Utsav Mishra ◽  
Manudeo Singh

<p>Anthropogenic factors and climate change induced severe forest fires that are reoccurring globally. Because of the large spatial scale, frequent occurrence, and danger involved with the forest fires, remote sensing-based approaches are best suited to study this phenomenon. However, there are few studies addressing the temporal effects of the various factors associated with the  forest fire. In this work, by using Analytical Hierarchy Process (AHP), a multi-criteria decision support system and geostatistical methods namely Getis-Ord Gi* statstic and Mann Kendall trend test, we have developed a framework to understand the temporal dynamics of forest fire hazard and associated factors by demarcating the hotspots of forest fire using freely available datasets . The proposed framework has been applied on the Similipal Biosphere Reserve (SBR), Odisha, India. With an area of 5569 km<sup>2</sup>, the SBR is the sixth largest biosphere reserve in India, comprising of a national park, bird sancturary, tiger reserve, and elephant corridor. Due to its biodiversity and importance in terms of rich and endemic species of flora and fauna, SBR was brought into the umbrella of world network of biosphere reserve under the Man and Biosphere (MAB) programme of UNESCO in the year 2008. Although being a biosphere of international importance, the SBR annually experiences nearly 12 km<sup>2</sup> of fire damage.Through this work, the most significant clusters of forest fire hotspots have been demarcated. We have used factors related to topographical, climatic, and physical characteristics of forest to generate forest fire hazard index at annual scale for 28 years (1988 – 2018) using AHP method. The geostatistical methods were applied on the generated annual fire hazard index data to demarcate the zones of emerging hotspots of forest fire. The results indicate that temporally, the trend of forest fire hazard in buffer zone of the area (Similipal Sanctuary) is decreasing, whereas in core area (Similipal National Park), it is increasing and corelates with the temporal trend of vegetation density in the whole area. However, vegetation density and land surface temperature in the core area does not changes significantly with time. The emerging hotspot analysis shows that most of the region (32% of the total area) is exhibiting an oscillating behaviour with respect to the fire hazard over the studied time-period of 28 years, with more than 50% of the years showing increasing trends of fire hazard. A total of 186 km<sup>2 </sup>of the region is persistently a hotspot of fire hazard in studied time-period. Overall, 11% of the study area is either under persistent fire hazard or showing increasing trend of fire hazard. However, in the central part of the SNP, the fire hazard is decreasing with time. The same region also observes intense rain, and this could be a factor for the observed decrement in the fire hazard. The results can be used for mitigating the fire hazard of the SBR, alsothe proposed framework can be applied globally to any region with dense vegetation for fire hazard spatiotemporal assessments.</p>


2019 ◽  
Vol 10 (3) ◽  
pp. 173-177
Author(s):  
Ati Dwi Nurhayati ◽  
Aldi Yusup

Forest fires resulted from human activities such as land preparation by using fire. Dry season, forest fire hazard, low awareness of local communities as well as limited infrastructure for fire control are all the factors related to the occurrence of forest fires. The objectives of this research is to identify forest fire causes in Gunung Walat Educational Forest. Forest fire in Gunung Walat Educational Forest over the last five years (2011-2015) occurred in 2012, 2014 and 2015. Forest fire in 2015 had the highest frequency that is three times with the area burnt reached 8.4 ha. The rainfall in Cibadak District is relatively high but it contain some months with the low rainfall. There is a correlation of some parameters that analyzed between characteristic of respondent with the occurrence of forest fire. Characteristic of respondent such as employment, income and distance to forest in Batununggal village showed a positive correlation to the forest fire occurrence. Key words: characteristic of respondent, forest fire, rainfall


Science ◽  
1939 ◽  
Vol 89 (2315) ◽  
pp. 13-13
Author(s):  
Frank Thone

2018 ◽  
Vol 10 (10) ◽  
pp. 102 ◽  
Author(s):  
Yi-Han Xu ◽  
Qiu-Ya Sun ◽  
Yu-Tong Xiao

Forest fires are a fatal threat to environmental degradation. Wireless sensor networks (WSNs) are regarded as a promising candidate for forest fire monitoring and detection since they enable real-time monitoring and early detection of fire threats in an efficient way. However, compared to conventional surveillance systems, WSNs operate under a set of unique resource constraints, including limitations with respect to transmission range, energy supply and computational capability. Considering that long transmission distance is inevitable in harsh geographical features such as woodland and shrubland, energy-efficient designs of WSNs are crucial for effective forest fire monitoring and detection systems. In this paper, we propose a novel framework that harnesses the benefits of WSNs for forest fire monitoring and detection. The framework employs random deployment, clustered hierarchy network architecture and environmentally aware protocols. The goal is to accurately detect a fire threat as early as possible while maintaining a reasonable energy consumption level. ns-2-based simulation validates that the proposed framework outperforms the conventional schemes in terms of detection delay and energy consumption.


2021 ◽  
Author(s):  

Forest and wildland fires are a natural part of ecosystems worldwide, but large fires in particular can cause societal, economic and ecological disruption. Fires are an important source of greenhouse gases and black carbon that can further amplify and accelerate climate change. In recent years, large forest fires in Sweden demonstrate that the issue should also be considered in other parts of Fennoscandia. This final report of the project “Forest fires in Fennoscandia under changing climate and forest cover (IBA ForestFires)” funded by the Ministry for Foreign Affairs of Finland, synthesises current knowledge of the occurrence, monitoring, modelling and suppression of forest fires in Fennoscandia. The report also focuses on elaborating the role of forest fires as a source of black carbon (BC) emissions over the Arctic and discussing the importance of international collaboration in tackling forest fires. The report explains the factors regulating fire ignition, spread and intensity in Fennoscandian conditions. It highlights that the climate in Fennoscandia is characterised by large inter-annual variability, which is reflected in forest fire risk. Here, the majority of forest fires are caused by human activities such as careless handling of fire and ignitions related to forest harvesting. In addition to weather and climate, fuel characteristics in forests influence fire ignition, intensity and spread. In the report, long-term fire statistics are presented for Finland, Sweden and the Republic of Karelia. The statistics indicate that the amount of annually burnt forest has decreased in Fennoscandia. However, with the exception of recent large fires in Sweden, during the past 25 years the annually burnt area and number of fires have been fairly stable, which is mainly due to effective fire mitigation. Land surface models were used to investigate how climate change and forest management can influence forest fires in the future. The simulations were conducted using different regional climate models and greenhouse gas emission scenarios. Simulations, extending to 2100, indicate that forest fire risk is likely to increase over the coming decades. The report also highlights that globally, forest fires are a significant source of BC in the Arctic, having adverse health effects and further amplifying climate warming. However, simulations made using an atmospheric dispersion model indicate that the impact of forest fires in Fennoscandia on the environment and air quality is relatively minor and highly seasonal. Efficient forest fire mitigation requires the development of forest fire detection tools including satellites and drones, high spatial resolution modelling of fire risk and fire spreading that account for detailed terrain and weather information. Moreover, increasing the general preparedness and operational efficiency of firefighting is highly important. Forest fires are a large challenge requiring multidisciplinary research and close cooperation between the various administrative operators, e.g. rescue services, weather services, forest organisations and forest owners is required at both the national and international level.


Sign in / Sign up

Export Citation Format

Share Document