scholarly journals Continuous Measurements of Temporal and Vertical Variations in Atmospheric CO2 and its δ13C in and above a Subtropical Plantation

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 584
Author(s):  
Changhua Chen ◽  
Xuefa Wen ◽  
Jingyuan Wang ◽  
Qingjun Guo

Atmospheric CO2 dynamics in forest ecosystems are dependent on interactions between photosynthesis, respiration, and turbulent mixing processes; however, the carbon isotopic composition of atmospheric CO2 (δ13C) is not well established due to limited measurement reports. In this study, a seven-inlet profile system with a Picarro analyzer was developed to conduct continuous in situ measurements of CO2 and its δ13C in and above a subtropical plantation from 2015 to 2017. Results showed that ecosystem CO2 concentration was the lowest in the afternoon and reached its peak at dawn, which mirrored variations in its δ13C in and above the canopy. Inverse seasonal variations were apparent between CO2 and its δ13C in and above the canopy, and δ13C was positive during the peak growing season and negative at other times. Diel and seasonal variations in ecosystem CO2 and its δ13C were mainly affected by the vapor pressure deficit, followed by photosynthetic active radiation, temperature, and the enhanced vegetation index in and above the canopy; however, environmental and physiological factors had reverse or no effects near the forest floor. Nocturnal gradients of vertical variations in atmospheric CO2 and its δ13C were greater than diurnal variations due to weak turbulent mixing under more stable atmospheric conditions overnight. These results implicate that photosynthesis and respiration dominated CO2 dynamics above the canopy, while CO2 recycling by photosynthesis and turbulent mixing changed CO2 dynamics in the canopy.

2011 ◽  
Vol 38 (4) ◽  
pp. 314-324 ◽  
Author(s):  
Andrzej Rakowski

AbstractThe traditional radiocarbon method widely used in archaeology and geology for chronological purposes can also be used in environmental studies. Combustion of fossil fuels like coal, natural gas, petroleum, etc., in industrial and/or heavily urbanized areas, has increased the concentration of carbon dioxide in the atmosphere. The addition of fossil carbon caused changes of carbon isotopic composition, in particular, a definite decrease of 14C concentration in atmospheric CO2 and other carbon reservoirs (ocean and terrestrial biosphere), known as the Suess effect. Tree rings, leaves, as well as other annual growing plants reflected the changes of radiocarbon concentration in the atmosphere due to processes of photosynthesis and assimilation of carbon from the air. By measuring radiocarbon concentration directly in atmospheric CO2 samples and/or biospheric material growing in industrial and/or highly urbanized areas where high emission of dead carbon is expected, it is possible to estimate the total emission of dead CO2. Based on equations of mass balance for CO2 concentration, stable isotopic composition of carbon and radiocarbon concentration it is possible to calculate CO2 con-centration associated with fossil fuel emission into the atmosphere. The procedure use differences between the radiocarbon concentration and stable isotope composition of carbon observed in clean areas and industrial or/and highly urbanized areas.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Foroogh Golkar ◽  
Malik Al-Wardy ◽  
Seyedeh Fatemeh Saffari ◽  
Kathiya Al-Aufi ◽  
Ghazi Al-Rawas

Recognition of the carbon dioxide (CO2) concentration variations over time is critical for tracing the future changes in climate both globally and regionally. In this study, a time series analysis of atmospheric CO2 concentration and its relationship with precipitation, relative humidity (RH), and vegetation is investigated over Oman. The daily XCO2 data from OCO-2 satellite was obtained from September 2014 to March 2019. The daily RH and precipitation data were also collected from the ground weather stations, and the Normalized Difference Vegetation Index was obtained from MODIS. Oman was studied in four distinct regions where the main emphasis was on the Monsoon Region in the far south. The CO2 concentration time series indicated a significant upward trend over different regions for the study period, with annual cycles being the same for all regions except the Monsoon Region. This is indicative of RH, precipitation, and consequently vegetation cover impact on atmospheric CO2 concentration, resulting in an overall lower annual growth in the Monsoon Region. Simple and multiple correlation analyses of CO2 concentration with mentioned parameters were performed in zero to three-month lags over Oman. They showed high correlations mainly during the rainfall period in the Monsoon Region.


2011 ◽  
Vol 59 (7) ◽  
pp. 630 ◽  
Author(s):  
Matthew Haworth ◽  
Annmarie Fitzgerald ◽  
Jennifer C. McElwain

The stomatal density (SD) and index (SI) of fossil plants are widely used in reconstructing palaeo-atmospheric CO2 concentration (palaeo-[CO2]). These stomatal reconstructions depend on the inverse relationship between atmospheric CO2 concentration ([CO2]) and SD and/or SI. Atmospheric oxygen concentration ([O2]) has also varied throughout earth history, influencing photosynthesis via the atmospheric CO2 : O2 ratio, and possibly affecting both SD and SI. Cycads formed a major component of Mesozoic floras, and may serve as suitable proxies of palaeo-[CO2]. However, little is known regarding SD and SI responses of modern cycads to [CO2] and [O2]. SD, SI and pore length were measured in six cycad species (Cycas revoluta, Dioon merolae, Lepidozamia hopei, Lepidozamia peroffskyana, Macrozamia miquelii and Zamia integrifolia) grown under elevated [CO2] (1500 ppm) and subambient [O2] (13.0%) in combination and separately, and compared with SD, SI and pore length under control atmospheric conditions of 380 ppm [CO2] and 20.9% [O2]. The cycad species analysed showed no significant SD, SI or pore-length response to changes in [CO2] or [O2].


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 318
Author(s):  
Panagiotis Kokkalis ◽  
Ourania Soupiona ◽  
Christina-Anna Papanikolaou ◽  
Romanos Foskinis ◽  
Maria Mylonaki ◽  
...  

We report on a long-lasting (10 days) Saharan dust event affecting large sections of South-Eastern Europe by using a synergy of lidar, satellite, in-situ observations and model simulations over Athens, Greece. The dust measurements (11–20 May 2020), performed during the confinement period due to the COVID-19 pandemic, revealed interesting features of the aerosol dust properties in the absence of important air pollution sources over the European continent. During the event, moderate aerosol optical depth (AOD) values (0.3–0.4) were observed inside the dust layer by the ground-based lidar measurements (at 532 nm). Vertical profiles of the lidar ratio and the particle linear depolarization ratio (at 355 nm) showed mean layer values of the order of 47 ± 9 sr and 28 ± 5%, respectively, revealing the coarse non-spherical mode of the probed plume. The values reported here are very close to pure dust measurements performed during dedicated campaigns in the African continent. By utilizing Libradtran simulations for two scenarios (one for typical midlatitude atmospheric conditions and one having reduced atmospheric pollutants due to COVID-19 restrictions, both affected by a free tropospheric dust layer), we revealed negligible differences in terms of radiative effect, of the order of +2.6% (SWBOA, cooling behavior) and +1.9% (LWBOA, heating behavior). Moreover, the net heating rate (HR) at the bottom of the atmosphere (BOA) was equal to +0.156 K/d and equal to +2.543 K/d within 1–6 km due to the presence of the dust layer at that height. On the contrary, the reduction in atmospheric pollutants could lead to a negative HR (−0.036 K/d) at the bottom of the atmosphere (BOA) if dust aerosols were absent, while typical atmospheric conditions are estimated to have an almost zero net HR value (+0.006 K/d). The NMMB-BSC forecast model provided the dust mass concentration over Athens, while the air mass advection from the African to the European continent was simulated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model.


2019 ◽  
Vol 16 (19) ◽  
pp. 3883-3910 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers on simulated burned area, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2 concentration, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1921. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trends in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the largest uncertainties in simulating global historical burned area are related to the representation of anthropogenic ignitions and suppression and effects of land use on vegetation and fire. In line with previous studies this highlights the need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire within Earth system model applications. Only two models show a strong response to atmospheric CO2 concentration. The effects of changes in atmospheric CO2 concentration on fire are complex and quantitative information of how fuel loads and how flammability changes due to this factor is missing. The response to lightning on global scale is low. The response of burned area to climate is spatially heterogeneous and has a strong inter-annual variation. Climate is therefore likely more important than the other factors for short-term variations and extremes in burned area. This study provides a basis to understand the uncertainties in global fire modelling. Both improvements in process understanding and observational constraints reduce uncertainties in modelling burned area trends.


Sign in / Sign up

Export Citation Format

Share Document