scholarly journals Climate Connectivity of European Forests for Species Range Shifts

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 940
Author(s):  
Qiyao Han ◽  
Greg Keeffe ◽  
Sean Cullen

Forest connectivity is important for the range shifts and long-term persistence of forest-dependent species, especially in the context of climate change. This study assessed the climate connectivity of European forests for species to track suitable climate conditions as the climate warms. Here, climate connectivity was calculated as the temperature difference between each forest patch and the coolest patch that can be reached along temperature gradients. We found that, overall, about 36% of the total forested area in Europe has achieved successful climate connectivity under the moderate emission scenario (SSP245), whereby species range shifts could circumvent the impact of climate warming. The percentage is much lower under the highest emission scenario (SSP585), which is only 12%. To identify forest areas of high importance for climate connectivity, we further evaluated the potential of each forest patch to serve as a stepping stone for species range shifts. Our results showed that about 94% of the European forested area is expected to experience species range shifts. Our study identified sites of high conservation value for improving and sustaining forest connectivity to facilitate climate-driven range shifts and thus could provide information for climate-smart management of European forests.

2018 ◽  
Author(s):  
Kimberly J. Gilbert ◽  
Stephan Peischl ◽  
Laurent Excoffier

AbstractThe fitness of spatially expanding species has been shown to decrease over time and space, but specialist species tracking their changing environment and shifting their range accordingly have been little studied. We use individual-based simulations and analytical modeling to compare the impact of range expansions and range shifts on genetic diversity and fitness loss, as well as the ability to recover fitness after either a shift or expansion. We find that the speed of a shift has a strong impact on fitness evolution. Fastest shifts show the strongest fitness loss per generation, but intermediate shift speeds lead to the strongest fitness loss per geographic distance. Range shifting species lose fitness more slowly through time than expanding species, however, their fitness compared at equivalent geographic distances spread can be considerably lower. These counter-intuitive results arise from the combination of time over which selection acts and mutations enter the system. Range shifts also exhibit reduced fitness recovery after a geographic shift and may result in extinction, whereas range expansions can persist from the core of the species range. The complexity of range expansions and range shifts highlights the potential for severe consequences of environmental change on species survival.Author SummaryAs environments change through time across the globe, species must adapt or relocate to survive. Specialized species must track the specific moving environments to which they are adapted, as compared to generalists which can spread widely. During colonization of new habitat, individuals can accumulate deleterious alleles through repeated bottlenecks. We show through simulation and analytic modeling that the process by which these alleles accumulate changes depending upon the speed at which populations spread over a landscape. This is due to the increased efficacy of selection against deleterious variants at slow speeds of range shifts and decreased input of mutations at faster speeds of range shifts. Under some selective circumstances, shifting of a species range leads to extinction of the entire population. This suggests that the rate of environmental change across the globe will play a large role in the survival of specialist species as compared to more generalist species.


2020 ◽  
pp. 28-33
Author(s):  
Valery Genadievich Popov ◽  
Andrey Vladimirovich Panfilov ◽  
Yuriy Vyacheslavovich Bondarenko ◽  
Konstantin Mikhailovich Doronin ◽  
Evgeny Nikolaevih Martynov ◽  
...  

The article analyzes the experience of the impact of the system of forest belts and mineral fertilizers on the yield of spring wheat, including on irrigated lands. Vegetation irrigation is designed to maintain the humidity of the active soil layer from germination to maturation at the lower level of the optimum-70-75%, and in the phases of tubulation-earing - flowering - 75-80% NV. However, due to the large differences in zones and microzones of soil and climate conditions and due to the weather conditions of individual years, wheat irrigation regimes require a clear differentiation. In the Volga region in the dry autumn rainfalls give the norm of 800-1000 m3/ha, and in saline soils – 1000-1300 and 3-4 vegetation irrigation at tillering, phases of booting, earing and grain formation the norm 600-650 m3/ha. the impact of the system of forest belts, mineral fertilizers on the yield of spring wheat is closely tied to the formation of microclimate at different distances from forest edges.


2021 ◽  
Vol 13 (12) ◽  
pp. 6875
Author(s):  
Irene Poza-Casado ◽  
Raquel Gil-Valverde ◽  
Alberto Meiss ◽  
Miguel Ángel Padilla-Marcos

Indoor air quality (IAQ) in educational buildings is a key element of the students’ well-being and academic performance. Window-opening behavior and air infiltration, generally used as the sole ventilation sources in existing educational buildings, often lead to unhealthy levels of indoor pollutants and energy waste. This paper evaluates the conditions of natural ventilation in classrooms in order to study how climate conditions affect energy waste. For that purpose, the impact of the air infiltration both on the IAQ and on the efficiency of the ventilation was evaluated in two university classrooms with natural ventilation in the Continental area of Spain. The research methodology was based on site sensors to analyze IAQ parameters such as CO2, Total Volatile Organic Compounds (TVOC), Particulate Matter (PM), and other climate parameters for a week during the cold season. Airtightness was then assessed within the classrooms and the close built environment by means of pressurization tests, and infiltration rates were estimated. The obtained results were used to set up a Computational Fluid Dynamics (CFD) model to evaluate the age of the local air and the ventilation efficiency value. The results revealed that ventilation cannot rely only on air infiltration, and, therefore, specific controlled ventilation strategies should be implemented to improve IAQ and to avoid excessive energy loss.


2021 ◽  
pp. 1-8
Author(s):  
Thaísa Araújo ◽  
Helena Machado ◽  
Dimila Mothé ◽  
Leonardo dos Santos Avilla

Abstract Climatic and environmental changes, as well as human action, have been cited as potential causes for the extinction of megafauna in South America at the end of the Pleistocene. Among megamammals lineages with Holarctic origin, only horses and proboscideans went extinct in South America during this period. This study aims to understand how the spatial extent of habitats suitable for Equus neogeus and Notiomastodon platensis changed between the last glacial maximum (LGM) and the middle Holocene in order to determine the impact that climatic and environmental changes had on these taxa. We used species distribution modeling to estimate their potential extent on the continent and found that both species occupied arid and semiarid open lands during the LGM, mainly in the Pampean region of Argentina, southern and northeastern Brazil, and parts of the Andes. However, when climate conditions changed from dry and cold during the LGM to humid and warm during the middle Holocene, the areas suitable for these taxa were reduced dramatically. These results support the hypothesis that climatic changes were a driving cause of extinction of these megamammals in South America, although we cannot rule out the impact of human actions or other potential causes for their extinction.


Author(s):  
Domingo Alcaraz-Segura ◽  
Angela Lomba ◽  
Rita Sousa-Silva ◽  
Diego Nieto-Lugilde ◽  
Paulo Alves ◽  
...  

Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The impact of climate change on climatic actions could significantly affect, in the mid-term future, the design of new structures as well as the reliability of existing ones designed in accordance to the provisions of present and past codes. Indeed, current climatic loads are defined under the assumption of stationary climate conditions but climate is not stationary and the current accelerated rate of changes imposes to consider its effects.</p><p>Increase of greenhouse gas emissions generally induces a global increase of the average temperature, but at local scale, the consequences of this phenomenon could be much more complex and even apparently not coherent with the global trend of main climatic parameters, like for example, temperature, rainfalls, snowfalls and wind velocity.</p><p>In the paper, a general methodology is presented, aiming to evaluate the impact of climate change on structural design, as the result of variations of characteristic values of the most relevant climatic actions over time. The proposed procedure is based on the analysis of an ensemble of climate projections provided according a medium and a high greenhouse gas emission scenario. Factor of change for extreme value distribution’s parameters and return values are thus estimated in subsequent time windows providing guidance for adaptation of the current definition of structural loads.</p><p>The methodology is illustrated together with the outcomes obtained for snow, wind and thermal actions in Italy. Finally, starting from the estimated changes in extreme value parameters, the influence on the long-term structural reliability can be investigated comparing the resulting time dependent reliability with the reference reliability levels adopted in modern Structural codes.</p>


2021 ◽  
Author(s):  
Takahiro Oyama ◽  
Jun'ya Takakura ◽  
Minoru Fujii ◽  
Kenichi Nakajima ◽  
Yasuaki Hijioka

Abstract There are concerns about the impact of climate change on Olympic Games, especially endurance events, such as marathons. In recent competitions, many marathon runners dropped out of their races due to extreme heat, and it is expected that more areas will be unable to host the Olympic Games due to climate change. Here, we show the feasibility of the Olympic marathon considering the variations in climate factors, socioeconomic conditions, and adaptation measures. The number of current possible host cities will decline by up to 24% worldwide by the late 21st century. Dozens of emerging cities, especially in Asia, will not be capable of hosting the marathon under the highest emission scenario. Moving the marathon from August to October and holding the games in multiple cities in the country are effective measures, and they should be considered if we are to maintain the regional diversity of the games.


Author(s):  
Hamdy Hassan

Abstract In this paper, a theoretical study is presented on enhancement of the solar still performance by using the exhaust gases passing inside a chimney under the still basin. The impact of the exhaust gases temperature on the solar still temperature, productivity, and efficiency are considered. The performance of solar still with chimney is compared with that of conventional solar still. The study is carried out under the hot and climate conditions of Upper Egypt. A complete transient mathematical model of the physical model including the solar still regions temperatures, productivity, and heat transfer between the solar still and the exhaust gases are constructed. The mathematical model is solved numerically by using fourth-order Runge-Kutta method and is programmed by using MATLAB. The mathematical model is validated using an experimental work. The results show that the solar still saline water temperature increases and productivity with using and rising the exhaust gases. Furthermore, the impact of using exhaust gases on the still performance in winter is greater than in summer. using chimney exhaust gases at 75 °C and 125 °C enhances the daily freshwater yield of the conventional still by more than three times and about six times in winter, respectively, and about two and half times and more than three times in summer, respectively.


2021 ◽  
Author(s):  
luis Augusto sanabria ◽  
Xuerong Qin ◽  
Jin Li ◽  
Robert Peter Cechet

Abstract Most climatic models show that climate change affects natural perils' frequency and severity. Quantifying the impact of future climate conditions on natural hazard is essential for mitigation and adaptation planning. One crucial factor to consider when using climate simulations projections is the inherent systematic differences (bias) of the modelled data compared with observations. This bias can originate from the modelling process, the techniques used for downscaling of results, and the ensembles' intrinsic variability. Analysis of climate simulations has shown that the biases associated with these data types can be significant. Hence, it is often necessary to correct the bias before the data can be reliably used for further analysis. Natural perils are often associated with extreme climatic conditions. Analysing trends in the tail end of distributions are already complicated because noise is much more prominent than that in the mean climate. The bias of the simulations can introduce significant errors in practical applications. In this paper, we present a methodology for bias correction of climate simulated data. The technique corrects the bias in both the body and the tail of the distribution (extreme values). As an illustration, maps of the 50 and 100-year Return Period of climate simulated Forest Fire Danger Index (FFDI) in Australia are presented and compared against the corresponding observation-based maps. The results show that the algorithm can substantially improve the calculation of simulation-based Return Periods. Forthcoming work will focus on the impact of climate change on these Return Periods considering future climate conditions.


Sign in / Sign up

Export Citation Format

Share Document