Feasibility of The Olympic Marathon Under Climatic And Socioeconomic Change

Author(s):  
Takahiro Oyama ◽  
Jun'ya Takakura ◽  
Minoru Fujii ◽  
Kenichi Nakajima ◽  
Yasuaki Hijioka

Abstract There are concerns about the impact of climate change on Olympic Games, especially endurance events, such as marathons. In recent competitions, many marathon runners dropped out of their races due to extreme heat, and it is expected that more areas will be unable to host the Olympic Games due to climate change. Here, we show the feasibility of the Olympic marathon considering the variations in climate factors, socioeconomic conditions, and adaptation measures. The number of current possible host cities will decline by up to 24% worldwide by the late 21st century. Dozens of emerging cities, especially in Asia, will not be capable of hosting the marathon under the highest emission scenario. Moving the marathon from August to October and holding the games in multiple cities in the country are effective measures, and they should be considered if we are to maintain the regional diversity of the games.

Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 74
Author(s):  
Abdul Haseeb Azizi ◽  
Yoshihiro Asaoka

Projected snow cover and river flows are important for planning and managing water resources in snow-dominated basins of the Himalayas. To quantify the impacts of climate change in the data scarce Panjshir River basin of Afghanistan, this study simulated present and future snow cover area (SCA) distributions with the snow model (SM), and river flows with the snowmelt runoff model (SRM). The SRM used the degree-day factor and precipitation gradient optimized by the SM to simulate river flows. Temperature and precipitation data from eight kinds of general circulation models (GCMs) were used for bias correction. The SM and SRM were first calibrated and validated using 2009–2015 data, and then bias-corrected future climate data were input to the models to simulate future SCA and river flows. Under both the representative concentration pathways (RCP) 4.5 and 8.5, the annual average SCA and river flow were projected to decrease in the mid and late 21st century, although seasonal increases were simulated in some instances. Uncertainty ranges in projected SCA and river flow under RCP 8.5 were small in the mid 21st century and large in the late 21st century. Therefore, climate change is projected to alter high-altitude stream sources in the Hindukush mountains and reduce the amount of water reaching downstream areas.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


2022 ◽  
Vol 9 ◽  
Author(s):  
Peijun Ju ◽  
Wenchao Yan ◽  
Jianliang Liu ◽  
Xinwei Liu ◽  
Liangfeng Liu ◽  
...  

As a sensitive, observable, and comprehensive indicator of climate change, plant phenology has become a vital topic of global change. Studies about plant phenology and its responses to climate change in natural ecosystems have drawn attention to the effects of human activities on phenology in/around urban regions. The key factors and mechanisms of phenological and human factors in the process of urbanization are still unclear. In this study, we analyzed variations in xylophyta phenology in densely populated cities during the fast urbanization period of China (from 1963 to 1988). We assessed the length of the growing season affected by the temperature and precipitation. Temperature increased the length of the growing season in most regions, while precipitation had the opposite effect. Moreover, the plant-growing season is more sensitive to preseason climate factors than to annual average climate factors. The increased population reduced the length of the growing season, while the growing GDP increased the length of the growing season in most regions (8 out of 13). By analyzing the impact of the industry ratio, we found that the correlation between the urban management of emerging cities (e.g., Chongqing, Zhejiang, and Guizhou) and the growing season is more significant, and the impact is substantial. In contrast, urban management in most areas with vigorously developed heavy industry (e.g., Heilongjiang, Liaoning, and Beijing) has a weak and insignificant effect on plant phenology. These results indicate that different urban development patterns can influence urban plant phenology. Our results provide some support and new thoughts for future research on urban plant phenology.


2015 ◽  
Vol 3 (7) ◽  
pp. 4353-4389
Author(s):  
S. Quiroga ◽  
C. Suárez

Abstract. This paper examines the effects of climate change and drought on agricultural outputs in Spanish rural areas. By now the effects of drought as a response to climate change or policy restrictions have been analyzed through response functions considering direct effects on crop productivity and incomes. These changes also affect incomes distribution in the region and therefore modify the social structure. Here we consider this complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of inequalities measure to estimate the impact of climate change and drought on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptance of certain adaptation measures in a context of drought. We provide the empirical estimations for the marginal effects of the two considered impacts: farms' income average and social income distribution. In our estimates we consider crop productivity response to both bio-physical and socio-economic aspects to analyze long term implications on both competitiveness and social disparities. We find disparities in the adaptation priorities depending on the crop and the region analyzed.


Author(s):  
Yuri Chendev ◽  
Maria Lebedeva ◽  
Olga Krymskaya ◽  
Maria Petina

The ongoing climate change requires a quantitative assessment of the impact of weather conditions on the nature and livelihoods of the population. However, to date, the concept of “climate risk” has not been finally defined, and the corresponding terminology is not universally recognized. One manifestation of climate change is an increase in climate variability and extremeness in many regions. At the same time, modern statistics indicate growing worldwide damage from dangerous weather and climate events. The most widely used in climate services is the concept of “Vulnerability index”, which reflects a combination (with or without weighing) of several indicators that indicate the potential damage that climate change can cause to a particular sector of the economy. development of adaptation measures to ensure sustainable development of territories. The main criterion for the vulnerability of the territory from the point of view of meteorological parameters is the extremeness of the basic values: daily air temperature, daily precipitation, maximum wind speed. To fully take into account the possible impacts of extreme climatic conditions on the region’s economy, it is necessary to detail the weather and climate risks taking into account the entire observation network, since significant differences in quantitative assessment are possible. The obtained average regional values of the climate vulnerability indices for the Belgorod Region of the Russian Federation provide 150 points for the winter period, 330 points for the summer season, which indicates the prevalence of extreme weather conditions in the warm season. Most of the territory has a relative influence on climatic phenomena, with the exception of the East and the Southeast Region. Moreover, the eastern part of the region is the most vulnerable in climatic terms.


2021 ◽  
Author(s):  
Antonina Kriuger ◽  
Alexander Reinbold ◽  
Martina Schubert-Frisius ◽  
Jörg Cortekar

<p>Cities are particularly vulnerable to climate change. At the same time, cities change slowly. Accordingly, preparatory measures to adapt to climate change have to be taken urgently. High-performance urban climate models with various applications can form the basis for prospective planning decisions, however, as of today no such model exists that can be easily applied outside of the scientific community. Therefore, the funding program Urban Climate Under Change [UC]<sup>2</sup> aims to further develop the new urban climate model PALM-4U (Parallelized Large-Eddy Simulation Model for Urban Applications) into a practice-oriented and user-friendly product that meets the needs of municipalities and other practical users in addition to scientific research.</p><p>Specifically, the high-performance model PALM-4U allows simulation of entire large cities comprising the area over 1.000 km<sup>2</sup> with a grid size of down to few meters. One of our goals within the project ProPolis is to design and test the practical implementation of PALM-4U in standard and innovative application fields which include thermal comfort (indices like PT, PET, UTCI), cold air balance (source areas, reach and others), local wind comfort (indices derived from medium winds and gusts) as well as dispersion of pollutants.</p><p>In close cooperation with our practice partners, we explore the potential of PALM-4U to support the urban planning processes in each specific application setting. Additionally, with development of the fit for purpose graphic user interface, manuals and trainings we aim to enable practitioners to apply the model for their individual planning questions and adaptation measures.</p><p>In our presentation, we will show an application case of PALM-4U in a major German city. We will investigate the effect of a planned development area on the local climate and the impact of different climate change adaptation measures (such as extensive vs. intensive green roofs). The comparative simulations of the current state and planning scenarios with integrated green and blue infrastructure should provide arguments for the municipal decision making in consideration of climate change aspects in a densely built-up environment, e.g. urban heat stress.</p>


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 397 ◽  
Author(s):  
Giovanni Sgubin ◽  
Didier Swingedouw ◽  
Iñaki García de Cortázar-Atauri ◽  
Nathalie Ollat ◽  
Cornelis van Leeuwen

A comprehensive analysis of all the possible impacts of future climate change is crucial for strategic plans of adaptation for viticulture. Assessments of future climate are generally based on the ensemble mean of state-of-the-art climate model projections, which prefigures a gradual warming over Europe for the 21st century. However, a few models project single or multiple O(10) year temperature drops over the North Atlantic due to a collapsing subpolar gyre (SPG) oceanic convection. The occurrence of these decadal-scale “cold waves” may have strong repercussions over the continent, yet their actual impact is ruled out in a multi-model ensemble mean analysis. Here, we investigate these potential implications for viticulture over Europe by coupling dynamical downscaled EUR-CORDEX temperature projections for the representative concentration pathways (RCP)4.5 scenario from seven different climate models—including CSIRO-Mk3-6-0 exhibiting a SPG convection collapse—with three different phenological models simulating the main developmental stages of the grapevine. The 21st century temperature increase projected by all the models leads to an anticipation of all the developmental stages of the grapevine, shifting the optimal region for a given grapevine variety northward, and making climatic conditions suitable for high-quality wine production in some European regions that are currently not. However, in the CSIRO-Mk3-6-0 model, this long-term warming trend is suddenly interrupted by decadal-scale cold waves, abruptly pushing the suitability pattern back to conditions that are very similar to the present. These findings are crucial for winemakers in the evaluation of proper strategies to face climate change, and, overall, provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.


2018 ◽  
Vol 9 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Mirko Knežević ◽  
Ljubomir Zivotić ◽  
Nataša Čereković ◽  
Ana Topalović ◽  
Nikola Koković ◽  
...  

Abstract The impact of climate change on potato cultivation in Montenegro was assessed. Three scenarios (A1B, A1Bs and A2) for 2001–2030, 2071–2100 and 2071–2100, respectively, were generated by a regional climate model and compared with the baseline period 1961–1990. The results indicated an increase of temperature during the summer season from 1.3 to 4.8 °C in the mountain region and from 1 to 3.4 °C in the coastal zone. The precipitation decreased between 5 and 50% depending on the scenario, region and season. The changes in temperature and precipitation influenced phenology, yield and water needs. The impact was more pronounced in the coastal areas than in the mountain regions. The growing season was shortened 13.6, 22.9 and 29.7 days for A1B, A1Bs and A2, respectively. The increase of irrigation requirement was 4.0, 19.5 and 7.3 mm for A1B, A1Bs and A2, respectively. For the baseline conditions, yield reduction under rainfed cultivation was lower than 30%. For A1B, A1Bs and A2 scenarios, yield reductions were 31.0 ± 8.2, 36.3 ± 11.6 and 34.1 ± 10.9%, respectively. Possible adaptation measures include shifting of production to the mountain (colder) areas and irrigation application. Rainfed cultivation remains a viable solution when the anticipation of sowing is adopted.


2019 ◽  
Vol 11 (15) ◽  
pp. 4233 ◽  
Author(s):  
Bausch ◽  
Humpe ◽  
Gössling

: Research has dealt extensively with different aspects of climate change and winter tourism such as the impact on ski resorts and ski lift operators, adaptation strategies, governance at destinations and reactions of winter sports guests to changing snow conditions. This paper goes deeper into the question of destination choice and examines the role of climate change among the many factors affecting guest loyalty at Alpine winter destinations. The study uses an established destination choice model with choice sets, destination image and dynamic feedback loop. A qualitative online forum identifies factors influencing winter destination choice, followed by a quantitative survey which compares Alpine winter holidaymakers categorised as “loyal”, “disloyal” and “undecided”. The results demonstrate that climate change clearly influences destination choice, but snow sports are not the only affected attractors. Enjoyment of the natural environment and value for money are just as high on the list of guest motivators. This indicates that climate change adaptation measures such as snowmaking can be counterproductive to guest loyalty because they spoil the natural scenery and raise prices. The paper concludes with a recommendation for winter destinations to prioritize conservation of the natural environment and integrate more environmental protection measures into their management strategies.


Sign in / Sign up

Export Citation Format

Share Document