scholarly journals Transcriptome Profile Analysis Reveals the Regulation Mechanism of Stamen Abortion in Handeliodendron bodinieri

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1071
Author(s):  
Xiatong Liu ◽  
Tianfeng Liu ◽  
Chong Zhang ◽  
Xiaorui Guo ◽  
Song Guo ◽  
...  

Handeliodendron bodinieri has unisexual flowers with aborted stamens in female trees, which can be used to study unisexual flower development in tree species. To elucidate the molecular mechanism of stamen abortion underlying sex differentiation, the stage of stamen abortion was determined by semi-thin sections; results showed that stamen abortion occurred in stage 6 during anther development. In addition, differentially expressed transcripts regulating stamen abortion were identified by comparing the transcriptome of female flowers and male flowers with RNA-seq technique. The results showed that 14 genes related to anther development and meiosis such as HbGPAT, HbAMS, HbLAP5, HbLAP3, and HbTES were down-regulated, and HbML5 was up-regulated. Therefore, this information will provide a theoretical foundation for the conservation, breeding, scientific research, and application of Handeliodendron bodinieri.

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 781 ◽  
Author(s):  
Hao ◽  
Zhou ◽  
Hickford ◽  
Gong ◽  
Wang ◽  
...  

The mammary gland is a crucial tissue for milk synthesis and plays a critical role in the feeding and growth of mammalian offspring. The aim of this study was to use RNA-sequencing (RNA-Seq) technology to provide a transcriptome profile of the ovine mammary gland at the peak of lactation. Small-Tailed Han (STH) sheep (n = 9) and Gansu Alpine Merino (GAM) sheep (n = 9), breeds with phenotypic differences in milk production traits, were selected for the RNA-Seq analysis. This revealed 74 genes that were more highly expressed in the STHs than in the GAMs. Similarly, 143 genes that were expressed at lower levels in the STHs than in the GAMs, were identified. Gene ontogeny (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that these differentially expressed genes (DEGs) were associated with binding and catalytic activities, hematopoietic cell lineages, oxytocin signaling pathway and neuroactive ligand–receptor interaction. This is the first study of the transcriptome profile of the ovine mammary gland in these Chinese breeds at peak lactation. The results provide for a better understanding of the genetic mechanisms involved in ovine lactation.


Botany ◽  
2018 ◽  
Vol 96 (11) ◽  
pp. 723-735 ◽  
Author(s):  
Gui-Fang Yang ◽  
Feng-Xia Xu

The multiple evolutionary origins and diverse morphologies of unisexual flowers in angiosperms indicate that many different developmental mechanisms [sporophytic and (or) gametophytic tissues] underlie patterns of sex differentiation, yet, these mechanisms leading to unisexuality remain largely unresolved. In Pseuduvaria trimera (W.G. Craib) Y.C.F. Su & R.M.K. Saunders, morphologically hermaphroditic flowers are functionally female due to indehiscent anthers, but the developmental and anatomical mechanisms preventing their dehiscence are still unknown. Anther and pollen development were compared in both male and functionally female flowers using histological observations to test whether anther indehiscence results from a sporophytic and (or) gametophytic default. The epidermis, endothecium, middle layers, and pollen development were identical in the two floral morphs, but variations occurred in the tapetum and stomium regions. In male flowers, concurrently with the binucleate tapetal cell degeneration, the appearance of intercellular spaces and lysis of the stomium region cells lead to anther dehiscence. Conversely, in the functionally female flowers, trinucleate tapetum appears with delayed degradation, and the persistent cells with a highly vacuolated cytoplasm and stomium region remain intact at maturity. Sporophytic tissues with tapetum abnormalities and stomium integrity are, thus, responsible for anther indehiscence. Lack of microspore rotation in P. trimera might indicate a different evolutionary origin of pollen tetrad formation in this family.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 423
Author(s):  
Genxi Zhang ◽  
Mingliang He ◽  
Pengfei Wu ◽  
Xinchao Zhang ◽  
Kaizhi Zhou ◽  
...  

microRNAs play an important role in the growth and development of chicken embryos, including the regulation of skeletal muscle genesis, myoblast proliferation, differentiation, and apoptosis. Our previous RNA-seq studies showed that microRNA-27b-3p (miR-27b-3p) might play an important role in regulating the proliferation and differentiation of chicken primary myoblasts (CPMs). However, the mechanism of miR-27b-3p regulating the proliferation and differentiation of CPMs is still unclear. In this study, the results showed that miR-27b-3p significantly promoted the proliferation of CPMs and inhibited the differentiation of CPMs. Then, myostatin (MSTN) was confirmed to be the target gene of miR-27b-3p by double luciferase reporter assay, RT-qPCR, and Western blot. By overexpressing and interfering with MSTN expression in CPMs, the results showed that overexpression of MSTN significantly inhibited the proliferation and differentiation of CPMs. In contrast, interference of MSTN expression had the opposite effect. This study showed that miR-27b-3p could promote the proliferation of CPMs by targeting MSTN. Interestingly, both miR-27b-3p and MSTN can inhibit the differentiation of CPMs. These results provide a theoretical basis for further understanding the function of miR-27b-3p in chicken and revealing its regulation mechanism on chicken muscle growth.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1745
Author(s):  
Ben-Ben Miao ◽  
Su-Fang Niu ◽  
Ren-Xie Wu ◽  
Zhen-Bang Liang ◽  
Bao-Gui Tang ◽  
...  

Pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) is a fish of high commercial value in the aquaculture industry in Asia. However, this hybrid fish is not cold-tolerant, and its molecular regulation mechanism underlying cold stress remains largely elusive. This study thus investigated the liver transcriptomic responses of pearl gentian grouper by comparing the gene expression of cold stress groups (20, 15, 12, and 12 °C for 6 h) with that of control group (25 °C) using PacBio SMRT-Seq and Illumina RNA-Seq technologies. In SMRT-Seq analysis, a total of 11,033 full-length transcripts were generated and used as reference sequences for further RNA-Seq analysis. In RNA-Seq analysis, 3271 differentially expressed genes (DEGs), two low-temperature specific modules (tan and blue modules), and two significantly expressed gene sets (profiles 0 and 19) were screened by differential expression analysis, weighted gene co-expression networks analysis (WGCNA), and short time-series expression miner (STEM), respectively. The intersection of the above analyses further revealed some key genes, such as PCK, ALDOB, FBP, G6pC, CPT1A, PPARα, SOCS3, PPP1CC, CYP2J, HMGCR, CDKN1B, and GADD45Bc. These genes were significantly enriched in carbohydrate metabolism, lipid metabolism, signal transduction, and endocrine system pathways. All these pathways were linked to biological functions relevant to cold adaptation, such as energy metabolism, stress-induced cell membrane changes, and transduction of stress signals. Taken together, our study explores an overall and complex regulation network of the functional genes in the liver of pearl gentian grouper, which could benefit the species in preventing damage caused by cold stress.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 896
Author(s):  
Yuenan Zhou ◽  
Pei Yang ◽  
Shuang Xie ◽  
Min Shi ◽  
Jianhua Huang ◽  
...  

The endoparasitic wasp Cotesia vestalis is an important biological agent for controlling the population of Plutella xylostella, a major pest of cruciferous crops worldwide. Though the genome of C. vestalis has recently been reported, molecular mechanisms associated with sexual development have not been comprehensively studied. Here, we combined PacBio Iso-Seq and Illumina RNA-Seq to perform genome-wide profiling of pharate adult and adult development of male and female C. vestalis. Taking advantage of Iso-Seq full-length reads, we identified 14,466 novel transcripts as well as 8770 lncRNAs, with many lncRNAs showing a sex- and stage-specific expression pattern. The differentially expressed gene (DEG) analyses showed 2125 stage-specific and 326 sex-specific expressed genes. We also found that 4819 genes showed 11,856 alternative splicing events through combining the Iso-Seq and RNA-Seq data. The results of comparative analyses showed that most genes were alternatively spliced across developmental stages, and alternative splicing (AS) events were more prevalent in females than in males. Furthermore, we identified six sex-determining genes in this parasitic wasp and verified their sex-specific alternative splicing profiles. Specifically, the characterization of feminizer and doublesex splicing between male and female implies a conserved regulation mechanism of sexual development in parasitic wasps.


2000 ◽  
Vol 77 (11) ◽  
pp. 1569-1579
Author(s):  
W A Charlton

Wiesneria triandra (Dalzell) Micheli is an unusual annual plant of the Alismataceae with spike-like inflorescences bearing unisexual flowers. Shoot development follows the sympodial pattern of other Alismataceae, but the cycle is so condensed that initiation of each foliage leaf is followed by inflorescence formation. The plant develops a tufted habit by the formation of an unusual accesory bud adjacent to each inflorescence. Male flowers have three sepals, three petals, three stamens, and usually three carpellodes; female flowers have a similar perianth, three staminodes, and three or more carpels. Up to the first three carpels, floral parts are arranged in alternating trimerous whorls. Additional carpels may occur above and between those of the first whorl. The androecium is particularly unusual for the Alismataceae since it has conventional alternation of stamens with petals rather than the antipetalous pairs of stamens commonly perceived in the family, but the phylogenetic postion of Wiesneria within the family (as revealed by other studies) indicates that the apparently conventional androecium of Wiesneria represents a derived state rather than a primitive one. The unisexual flowers also represent a derived state.


2007 ◽  
Vol 23 (5) ◽  
pp. 607-610 ◽  
Author(s):  
Mathieu Chouteau ◽  
Melanie McClure ◽  
Marc Gibernau

Data on pollination ecology of Araceae are still scarce and most concern species belonging to the subfamily Aroideae (García-Robledo et al. 2004, Gibernau 2003, Ivancic et al. 2004, 2005; Maia & Schlindwein 2006). In this subfamily, inflorescences consist of unisexual flowers: female flowers are located in the lower portion and the male flowers are in the upper portion of the inflorescence (Mayo et al. 1997). In the documented neotropical Aroideae, pollinators are nocturnal beetles and pollination mechanisms take place within a floral chamber during a short flowering cycle (generally 24–48 h) with floral rewards (sterile flowers rich in proteins and/or lipids) for the beetle pollinators, the secretion of resin to secure pollen on the pollinator, and the production of heat and odours (Chouteau et al. 2007, García-Robledo et al. 2004, Gibernau & Barabé 2002, Gibernau et al. 1999, 2000, 2003; Maia & Schlindwein 2006, Young 1986).


2020 ◽  
Vol 61 (5) ◽  
pp. 988-1004 ◽  
Author(s):  
Xiaoying Pan ◽  
Wei Yan ◽  
Zhenyi Chang ◽  
Yingchao Xu ◽  
Ming Luo ◽  
...  

Abstract Pollen development is critical to the reproductive success of flowering plants, but how it is regulated is not well understood. Here, we isolated two allelic male-sterile mutants of OsMYB80 and investigated how OsMYB80 regulates male fertility in rice. OsMYB80 was barely expressed in tissues other than anthers, where it initiated the expression during meiosis, reached the peak at the tetrad-releasing stage and then quickly declined afterward. The osmyb80 mutants exhibited premature tapetum cell death, lack of Ubisch bodies, no exine and microspore degeneration. To understand how OsMYB80 regulates anther development, RNA-seq analysis was conducted to identify genes differentially regulated by OsMYB80 in rice anthers. In addition, DNA affinity purification sequencing (DAP-seq) analysis was performed to identify DNA fragments interacting with OsMYB80 in vitro. Overlap of the genes identified by RNA-seq and DAP-seq revealed 188 genes that were differentially regulated by OsMYB80 and also carried an OsMYB80-interacting DNA element in the promoter. Ten of these promoter elements were randomly selected for gel shift assay and yeast one-hybrid assay, and all showed OsMYB80 binding. The 10 promoters also showed OsMYB80-dependent induction when co-expressed in rice protoplast. Functional annotation of the 188 genes suggested that OsMYB80 regulates male fertility by directly targeting multiple biological processes. The identification of these genes significantly enriched the gene networks governing anther development and provided much new information for the understanding of pollen development and male fertility.


Sign in / Sign up

Export Citation Format

Share Document