scholarly journals The Potential Distribution of Juniperus rigida Sieb. et Zucc. Vary Diversely in China under the Stringent and High GHG Emission Scenarios Combined Bioclimatic, Soil, and Topographic Factors

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1140
Author(s):  
Zhenjiang Lv ◽  
Dengwu Li

Global warming poses an enormous threat to particular species with shifts to their suitable habitat. Juniperus rigida Sieb. et Zucc., an endemic species to East Asia and a pioneer species in the Loess plateau region, is endangered because of the shrinking and scattered habitat threatened by climate change. For the sake of analyzing the impact of climate warming on its possible habitat, we herein projected the current and future potential habitats of J. rigida in China and comparatively analyzed the ecological habitat changes in three main distribution regions. There were 110 specimen records of J. rigida collected across China and 22 environmental datasets, including bioclimatic variables and soil and topographical factors, selected by the Pearson Correlation Coefficient. The MaxEnt model based on specimen presence and environmental factors was used for projecting the potential habitats of J. rigida in China in the 2050s and the 2070s of RCP 2.6 and RCP 8.5 scenarios. The results indicated an excellence model performance with the average value of the area under curve (AUC) is 0.928. The mean temperature of the driest quarter (MTDq) and the temperature annual range (TAR) provided important contributions to the potential distribution of J. rigida. There were three main distribution areas in China, the Xinjiang region, the Loess-Inner Mongolian Plateau region, and the Changbai Mountain region. The distribution increased overall in area under RCP 2.6 and decreased for RCP 8.5. The mean altitude of the core distribution shifted upward in general under both scenarios. The Loess–Inner Mongolian Plateau region is the biggest distribution, encompassing ca. 61.39 × 104 km2 (86.87 × 104 km2 in China). The region threatened most by climate change is located in the Changbai Mountain distribution, with the centroid of the cord suitable habitat migrating southwest about 227.47 and 260.32 km under RCP 2.6 and RCP 8.5 by the 2070s. In summary, these findings provided a well-grounded understanding of the effect of climate change on ecological distribution and furnished theory evidence for the protection, management, and sustainable use of J. rigida.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12001
Author(s):  
Jinbo Fu ◽  
Linlin Zhao ◽  
Changdong Liu ◽  
Bin Sun

As IUCN critically vulnerable species,the Indo-Pacific humpback dolphins (Sousa chinensis) have attracted great public attention in recent years. The threats of human disturbance and environmental pollution to this population have been documented extensively. However, research on the sensitivity of this species to climate change is lacking. To understand the effect of climate change on the potential distribution of Sousa chinensis, we developed a weighted ensemble model based on 82 occurrence records and six predictor variables (e.g., ocean depth, distance to shore, mean temperature, salinity, ice thickness, and current velocity). According to the true skill statistic (TSS) and the area under the receiver operating characteristic curve (AUC), our ensemble model presented higher prediction precision than most of the single-algorithm models. It also indicated that ocean depth and distance to shore were the most important predictors in shaping the distribution patterns. The projections for the 2050s and 2100s from our ensemble model indicated a severe adverse impact of climate change on the Sousa chinensis habitat. Over 75% and 80% of the suitable habitat in the present day will be lost in all representative concentration pathway emission scenarios (RCPS) in the 2050s and 2100s, respectively. With the increased numbers of records of stranding and deaths of Sousa chinensis in recent years, strict management regulations and conservation plans are urgent to safeguard the current suitable habitats. Due to habitat contraction and poleward shift in the future, adaptive management strategies, including designing new reserves and adjusting the location and range of reserves according to the geographical distribution of Sousa chinensis, should be formulated to minimize the impacts of climate change on this species.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 429
Author(s):  
Yadong Xu ◽  
Yi Huang ◽  
Huiru Zhao ◽  
Meiling Yang ◽  
Yuqi Zhuang ◽  
...  

Cypripedium japonicum is an endangered terrestrial orchid species with high ornamental and medicinal value. As global warming continues to intensify, the survival of C. japonicum will be further challenged. Understanding the impact of climate change on its potential distribution is of great significance to conserve this species. In this study, we established an ensemble species distribution model based on occurrence records of C. japonicum and 13 environmental variables to predict its potential distribution under current and future climatic conditions. The results show that the true skill statistic (TSS), Cohen’s kappa statistic (Kappa), and the area under the receiver operating characteristic curve (AUC) values of the ensemble model were 0.968, 0.906, and 0.995, respectively, providing more robust predictions. The key environmental variables affecting the distribution of C. japonicum were the precipitation in the warmest quarter (Bio18) and the mean temperature in the driest quarter (Bio9). Under future climatic conditions, the total suitable habitat of C. japonicum will increase slightly and tend to migrate northwestward, but the highly suitable areas will be severely lost. By 2070, the loss of its highly suitable habitat area will reach 57.69–72.24% under representative concentration pathway (RCP) 4.5 and 8.5 respectively, and the highly suitable habitats in Zhejiang and Anhui will almost disappear. It is noteworthy that the highly suitable habitat of C. japonicum has never crossed the Qinba mountainous area during the migration process of the suitable habitat to the northwest. Meanwhile, as the best-preserved area of highly suitable habitat for C. japonicum in the future, the Qinba mountainous area is of great significance to protect the wild germplasm resources of C. japonicum. In addition, we found that most of the changes predicted for 2070 will already be seen in 2050; the problem of climate change may be more urgent than it is believed.


ZooKeys ◽  
2021 ◽  
Vol 1070 ◽  
pp. 1-12
Author(s):  
Aarón Gómez-Cruz ◽  
Nancy G. Santos-Hernández ◽  
José Alberto Cruz ◽  
Daniel Ariano-Sánchez ◽  
Christian Ruiz-Castillejos ◽  
...  

Climate change represents a real threat to biodiversity conservation worldwide. Although the effects on several species of conservation priority are known, comprehensive information about the impact of climate change on reptile populations is lacking. In the present study, we analyze outcomes on the potential distribution of the black beaded lizard (Heloderma alvarezi Bogert & Martin del Campo, 1956) under global warming scenarios. Its potential distribution, at present and in projections for the years 2050 and 2070, under both optimistic and pessimistic climate change forecasts, were computed using current data records and seven bioclimatic variables. General results predict a shift in the future potential distribution of H. alvarezi due to temperature increase. The optimistic scenario (4.5 W/m2) for 2070 suggests an enlargement in the species’ distribution as a response to the availability of new areas of suitable habitat. On the contrary, the worst-case scenario (7 W/m2) shows a distribution decrease by 65%. Moreover, the range distribution of H. alvarezi is directly related to the human footprint, which consequently could magnify negative outcomes for this species. Our research elucidates the importance of conservation strategies to prevent the extinction of the black beaded lizard, especially considering that this species is highly threatened by aversive hunting.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34 ◽  
Author(s):  
Sujith S. Ratnayake ◽  
Lalit Kumar ◽  
Champika S. Kariyawasam

Neglected and underutilized fruit species (NUFS) can make an important contribution to the economy, food security and nutrition requirement for Sri Lanka. Identifying suitable areas for cultivation of NUFS is of paramount importance to deal with impending climate change issues. Nevertheless, limited studies have been carried out to assess the impact of climate change on the potential distribution of NUFS. Therefore, we examined the potential range changes of NUFS in a tropical climate using a case study from Sri Lanka. We prioritized and modeled the potentially suitable areas for four NUFS, namely Aegle marmelos, Annona muricata, Limonia acidissima and Tamarindus indica under current and projected climates (RCP 4.5 and RCP 8.5) for 2050 and 2070 using the maximum entropy (Maxent) species distribution modeling (SDM) approach. Potentially suitable areas for NUFS are predicted to decrease in the future under both scenarios. Out of the four NUFS, T. indica appears to be at the highest risk due to reduction in potential areas that are suitable for its growth under both emissions scenarios. The predicted suitable area reductions of this species for 2050 and 2070 are estimated as >75% compared to the current climate. A region of potentially higher climatic suitability was found around mid-county for multiple NUFS, which is also predicted to decrease under projected climate change. Further, the study identified high-potential agro-ecological regions (AERs) located in the mid-country’s wet and intermediate zones as the most suitable areas for promoting the cultivation of NUFS. The findings show the potential for incorporating predictive modeling into the management of NUFS under projected climate change. This study highlights the requirements of climate change adaptation strategies and focused research that can increase the resilience of NUFS to future changes in climate.


2020 ◽  
Author(s):  
Ayush Adhikari ◽  
Deep Narayan Shah

AbstractAbrupt change in climate or simply termed as climate change is considered to be one of the major challenges in biodiversity. Change in climate has impacted many species around the world, particularly threatened species like One-Horned Rhinoceros (Rhinoceros unicornis). Rhinoceros unicornis is placed as an endangered species by International Union for Conservation of Nature (IUCN). Being an endangered species, studies regarding the impact of climate on the distribution of Rhinoceros unicornis is very rare in Nepal. Thus, the present study focuses on identifying the potential impact of climate change on the suitable habitat of Rhinoceros unicornis in Nepal using Species Distribution Modelling (SDM). For this, we used the present climatic scenarios and two greenhouse concentration trajectories (RCP 4.5 and RCP 8.5) for two different time periods (2050 and 2070) using different bioclimatic variables. Our model demonstrated the loose of the suitable habitat of Rhincoeros unicornis by 51.87% and 56.54% in RCP 4.5 for year 2050 and 2070 respectively. Under RCP 8.5 for year 2050 and 2070, the model demonstrated the loose of present suitable habitat by 54.25% and 49.51% respectively. Likewise, our result also predicted elevation as an important bioclimatic variable. This study would provide an information to the policy makers, conservationist and government officer of Nepal for the management and protection of habitat of Rhinoceros unicornis in present and future climatic context.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Mohammed A. Dakhil ◽  
Marwa Waseem A. Halmy ◽  
Walaa A. Hassan ◽  
Ali El-Keblawy ◽  
Kaiwen Pan ◽  
...  

Climate change is an important driver of biodiversity loss and extinction of endemic montane species. In China, three endemic Juniperus spp. (Juniperuspingii var. pingii, J.tibetica, and J.komarovii) are threatened and subjected to the risk of extinction. This study aimed to predict the potential distribution of these three Juniperus species under climate change and dispersal scenarios, to identify critical drivers explaining their potential distributions, to assess the extinction risk by estimating the loss percentage in their area of occupancy (AOO), and to identify priority areas for their conservation in China. We used ensemble modeling to evaluate the impact of climate change and project AOO. Our results revealed that the projected AOOs followed a similar trend in the three Juniperus species, which predicted an entire loss of their suitable habitats under both climate and dispersal scenarios. Temperature annual range and isothermality were the most critical key variables explaining the potential distribution of these three Juniperus species; they contribute by 16–56.1% and 20.4–38.3%, respectively. Accounting for the use of different thresholds provides a balanced approach for species distribution models’ applications in conservation assessment when the goal is to assess potential climatic suitability in new geographical areas. Therefore, south Sichuan and north Yunnan could be considered important priority conservation areas for in situ conservation and search for unknown populations of these three Juniperus species.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 544
Author(s):  
Hang Ning ◽  
Ming Tang ◽  
Hui Chen

Dendroctonus armandi (Coleoptera: Curculionidae: Scolytidae) is a bark beetle native to China and is the most destructive forest pest in the Pinus armandii woodlands of central China. Due to ongoing climate warming, D. armandi outbreaks have become more frequent and severe. Here, we used Maxent to model its current and future potential distribution in China. Minimum temperature of the coldest month and precipitation seasonality are the two major factors constraining the current distribution of D. armandi. Currently, the suitable area of D. armandi falls within the Qinling Mountains and Daba Mountains. The total suitable area is 15.83 × 104 km2. Under future climate scenarios, the total suitable area is projected to increase slightly, while remaining within the Qinling Mountains and Daba Mountains. Among the climate scenarios, the distribution expanded the most under the maximum greenhouse gas emission scenario (representative concentration pathway (RCP) 8.5). Under all assumptions, the highly suitable area is expected to increase over time; the increase will occur in southern Shaanxi, northwest Hubei, and northeast Sichuan Provinces. By the 2050s, the highly suitable area is projected to increase by 0.82 × 104 km2. By the 2050s, the suitable climatic niche for D. armandi will increase along the Qinling Mountains and Daba Mountains, posing a major challenge for forest managers. Our findings provide information that can be used to monitor D. armandi populations, host health, and the impact of climate change, shedding light on the effectiveness of management responses.


2021 ◽  
Author(s):  
Anne-Marie Begin

<p>To estimate the impact of climate change on our society we need to use climate projections based on numerical models. These models make it possible to assess the effects on climate of the increase in greenhouse gases (GHG) as well as natural variability. We know that the global average temperature will increase and that the occurrence, intensity and spatio-temporal distribution of extreme precipitations will change. These extreme weather events cause droughts, floods and other natural disasters that have significant consequences on our life and environment. Precipitation is a key variable in adapting to climate change.</p><p> </p><p>This study focuses on the ClimEx large ensemble, a set of 50 independent simulations created to study the effect of climate change and natural variability on the water network in Quebec. This dataset consists of simulations produced using the Canadian Regional Climate Model version 5 (CRCM5) at 12 km of resolution driven by simulations from the second generation Canadian Earth System Model (CanESM2) global model at 310 km of resolution.</p><p> </p><p>The aim of the project is to evaluate the performance of the ClimEx ensemble in simulating the daily cycle and representing extreme values.  To get there, 30 years of hourly time series for precipitation and 3 hourly for temperature are analyzed. The simulations are compared with the values from the simulation of CRCM5 driven by ERA-Interim reanalysis, the ERA5 reanalysis and Environment and Climate Change Canada (ECCC) stations. An evaluation of the sensitivity of different statistics to the number of members is also performed.</p><p> </p><p>The daily cycle of precipitation from ClimEx shows mainly non-significant correlations with the other datasets and its amplitude is less than the observation datas from ECCC stations. For temperature, the correlation is strong and the amplitude of the cycle is similar to observations. ClimEx provides a fairly good representation of the 95, 97, 99<sup>th</sup> quantiles for precipitation. For temperature it represents a good distribution of quantiles but with a warm bias in southern Quebec. For precipitation hourly maximum, ClimEx shows values 10 times higher than ERA5.  For temperature, minimum and maximum values may exceed the ERA5 limit by up to 20°C. For precipitation, the minimum number of members for the estimation of the 95 and 99<sup>th</sup><sup></sup>quantiles and the mean cycle is between 15 and 50 for an estimation error of less than 5%. For the 95, 99<sup>th</sup> quantiles of temperature, the minimum number of members is between 1 and 17 and for the mean cycle 1 to 2 members are necessary to obtain an estimation error of less than 0.5°C.</p>


Sign in / Sign up

Export Citation Format

Share Document