scholarly journals Impact of Climate Change on Potential Distribution of Chinese White Pine Beetle Dendroctonus armandi in China

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 544
Author(s):  
Hang Ning ◽  
Ming Tang ◽  
Hui Chen

Dendroctonus armandi (Coleoptera: Curculionidae: Scolytidae) is a bark beetle native to China and is the most destructive forest pest in the Pinus armandii woodlands of central China. Due to ongoing climate warming, D. armandi outbreaks have become more frequent and severe. Here, we used Maxent to model its current and future potential distribution in China. Minimum temperature of the coldest month and precipitation seasonality are the two major factors constraining the current distribution of D. armandi. Currently, the suitable area of D. armandi falls within the Qinling Mountains and Daba Mountains. The total suitable area is 15.83 × 104 km2. Under future climate scenarios, the total suitable area is projected to increase slightly, while remaining within the Qinling Mountains and Daba Mountains. Among the climate scenarios, the distribution expanded the most under the maximum greenhouse gas emission scenario (representative concentration pathway (RCP) 8.5). Under all assumptions, the highly suitable area is expected to increase over time; the increase will occur in southern Shaanxi, northwest Hubei, and northeast Sichuan Provinces. By the 2050s, the highly suitable area is projected to increase by 0.82 × 104 km2. By the 2050s, the suitable climatic niche for D. armandi will increase along the Qinling Mountains and Daba Mountains, posing a major challenge for forest managers. Our findings provide information that can be used to monitor D. armandi populations, host health, and the impact of climate change, shedding light on the effectiveness of management responses.

Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The impact of climate change on climatic actions could significantly affect, in the mid-term future, the design of new structures as well as the reliability of existing ones designed in accordance to the provisions of present and past codes. Indeed, current climatic loads are defined under the assumption of stationary climate conditions but climate is not stationary and the current accelerated rate of changes imposes to consider its effects.</p><p>Increase of greenhouse gas emissions generally induces a global increase of the average temperature, but at local scale, the consequences of this phenomenon could be much more complex and even apparently not coherent with the global trend of main climatic parameters, like for example, temperature, rainfalls, snowfalls and wind velocity.</p><p>In the paper, a general methodology is presented, aiming to evaluate the impact of climate change on structural design, as the result of variations of characteristic values of the most relevant climatic actions over time. The proposed procedure is based on the analysis of an ensemble of climate projections provided according a medium and a high greenhouse gas emission scenario. Factor of change for extreme value distribution’s parameters and return values are thus estimated in subsequent time windows providing guidance for adaptation of the current definition of structural loads.</p><p>The methodology is illustrated together with the outcomes obtained for snow, wind and thermal actions in Italy. Finally, starting from the estimated changes in extreme value parameters, the influence on the long-term structural reliability can be investigated comparing the resulting time dependent reliability with the reference reliability levels adopted in modern Structural codes.</p>


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12001
Author(s):  
Jinbo Fu ◽  
Linlin Zhao ◽  
Changdong Liu ◽  
Bin Sun

As IUCN critically vulnerable species,the Indo-Pacific humpback dolphins (Sousa chinensis) have attracted great public attention in recent years. The threats of human disturbance and environmental pollution to this population have been documented extensively. However, research on the sensitivity of this species to climate change is lacking. To understand the effect of climate change on the potential distribution of Sousa chinensis, we developed a weighted ensemble model based on 82 occurrence records and six predictor variables (e.g., ocean depth, distance to shore, mean temperature, salinity, ice thickness, and current velocity). According to the true skill statistic (TSS) and the area under the receiver operating characteristic curve (AUC), our ensemble model presented higher prediction precision than most of the single-algorithm models. It also indicated that ocean depth and distance to shore were the most important predictors in shaping the distribution patterns. The projections for the 2050s and 2100s from our ensemble model indicated a severe adverse impact of climate change on the Sousa chinensis habitat. Over 75% and 80% of the suitable habitat in the present day will be lost in all representative concentration pathway emission scenarios (RCPS) in the 2050s and 2100s, respectively. With the increased numbers of records of stranding and deaths of Sousa chinensis in recent years, strict management regulations and conservation plans are urgent to safeguard the current suitable habitats. Due to habitat contraction and poleward shift in the future, adaptive management strategies, including designing new reserves and adjusting the location and range of reserves according to the geographical distribution of Sousa chinensis, should be formulated to minimize the impacts of climate change on this species.


2017 ◽  
Vol 18 (4) ◽  
pp. 1680-1695
Author(s):  
AHMAD DWI SETYAWAN ◽  
JATNA SUPRIATNA ◽  
DEDY DARNAEDI ◽  
ROKHMATULOH ROKHMATULOH ◽  
SUTARNO SUTARNO ◽  
...  

Setyawan AD, Supriatna J, Darnaedi D, Rokhmatuloh, Sutarno, Sugiyarto, Nursamsi I, Komala WR, Pradan P. 2017. Impact of climate change on potential distribution of xero-epiphytic selaginellas (Selaginella involvens and S. repanda) in Southeast Asia. Biodiversitas 18: 1680-1695. Climate change is one of the greatest challenges for all life on earth, as it may become the dominant driver of changes in ecosystem services and biodiversity loss at the global level. Selaginella is a group of spike-mosses that seem easily affected by global warming (climate change) due to requiring water medium for fertilization. However, some species have been adapted to dry condition and may grow as epiphytes, such as S. involvens and S. repanda. Both species are commonly found in opposing a range of elevation. S. involvens is often found in high-altitude regions, whereas S. repanda is often found at lower-altitude regions. The difference in this altitudinal distributions is expected to limit redistribution mechanism of each species to adapt the climate change projections. This study model examines the potential geographic distribution of S. involvens and S. repanda under current climatic conditions and models the impact of projected climate change on their potential distribution. Future climate predictions are made with four detailed bioclimatic scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) and three-time intervals (2030, 2050, 2080), which combine various climatic factors. In this modeling, it can be concluded that S. involvens and S. repanda can adapt to future climate change, and continue to be sustainable, although it is strongly influenced and shifting habitat distribution in some areas.


2021 ◽  
Author(s):  
Emmanuel Dubois ◽  
Marie Larocque ◽  
Sylvain Gagné

&lt;p&gt;In cold and humid climates, rivers and superficial water bodies are often fed by groundwater with relatively constant inflows that are most visible during the summer (limited net precipitation) and the winter (limited runoff and infiltration). The harsh winter &amp;#8211; short growing season succession could be drastically affected by climate change. Although water is abundant, extreme low flows are expected in the near future, most likely due to warmer summer temperatures, increased summer PET and possible lower summer precipitation. It is thus crucial to provide stakeholders with scenarios of future groundwater recharge (GWR) to anticipate the impacts of climate change on groundwater resources at the regional scale. This study aims to test the contributions of a superficial water budget model to estimate the impact of climate change on the regional GWR. The methodology is tested in a forested and agricultural region of southern Quebec, located between the St. Lawrence River and the Canada-USA border, and between the Quebec-Ontario border and Quebec City (36,000 km&amp;#178;). Scenarios of GWR for the region are simulated with the HydroBudget model, performing a transient-state spatialized superficial water budget, and 12 climate scenarios (RCP 4.5 and 8.5, 1951-2100 period). The model was previously calibrated in the study area for the 1961-2017 period and provides spatially distributed runoff, actual evapotranspiration, and GWR fluxes at a 500 x 500 m resolution with a monthly time step. Climate scenarios show warming of the annual temperature from +2 to +5&amp;#176;C and up to 20% increase of annual precipitation at the 2100 horizon compared to the 1981-2010 reference period. By the end of the century, the number of days above 0&amp;#176;C could double between November and April, dividing by almost two the quantity of snow during winter. The clear trends of warming temperature leads to a clear actual evapotranspiration (AET) increase while the increasing variability in annual precipitation translates into more variable annual runoff and GWR. Although no annual GWR decrease is simulated, an increase of winter GWR (up to x2) is expected, linked to warmer winters and unfrozen soils, followed by a decrease for the rest of the year, linked to a longer growing season producing higher AET rates. Although simple in its simulation process, the use of a superficial water budget model simulating soil frost provides new insights into the possible future trends in the different hydrologic variables based on a robust understanding of past condition. Aside from providing scenarios of spatialized GWR (also runoff and AET) at the 2100 horizon for a large region, this study shows that a simple water budget model is an appropriate and affordable tool to provide stakeholders with useful data for water management in a changing climate.&lt;/p&gt;


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 852 ◽  
Author(s):  
Mohammad Kamruzzaman ◽  
Syewoon Hwang ◽  
Soon-Kun Choi ◽  
Jaepil Cho ◽  
Inhong Song ◽  
...  

This research aims to assess the impact of climate change on water balance components in irrigated paddy cultivation. The APEX-Paddy model, which is the modified version of the APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystems, was used to evaluate the paddy water balance components considering future climate scenarios. The bias-corrected future projections of climate data from 29 GCMs (General Circulation Models) were applied to the APEX-Paddy model simulation. The study area (Jeonju station) forecasts generally show increasing patterns in rainfall, maximum temperature, and minimum temperature with a rate of up to 23%, 27%, and 45%, respectively. The hydrological simulations suggest over-proportional runoff–rainfall and under-proportional percolation and deep-percolation–rainfall relationships for the modeled climate scenarios. Climate change scenarios showed that the evapotranspiration amount was estimated to decrease compared to the baseline period (1976–2005). The evaporation was likely to increase by 0.12%, 2.21%, and 7.81% during the 2010s, 2040s, and 2070s, respectively under Representative Concentration Pathway (RCP)8.5, due to the increase in temperature. The change in evaporation was more pronounced in RCP8.5 than the RCP4.5 scenario. The transpiration is expected to reduce by 2.30% and 12.62% by the end of the century (the 2070s) under RCP4.5 and RCP8.5, respectively, due to increased CO2 concentration. The irrigation water demand is generally expected to increase over time in the future under both climate scenarios. Compared to the baseline, the most significant change is expected to increase in the 2040s by 3.21% under RCP8.5, while the lowest increase was found by 0.36% in 2010s under RCP4.5. The increment of irrigation does not show a significant difference; the rate of increase in the irrigation was found to be greater RCP8.5 than RCP4.5 except in the 2070s. The findings of this study can play a significant role as the basis for evaluating the vulnerability of rice production concerning water management against climate change.


Sign in / Sign up

Export Citation Format

Share Document