scholarly journals Soil Carbon, Nitrogen, and Phosphorus Storages and Their Stoichiometry Due to Mixed Afforestation with Hippophae rhamnoides in the Loess Hilly Region, China

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1718
Author(s):  
Xu Wu ◽  
Yaobin Niu ◽  
Mengyao Xun ◽  
Junyi Jin ◽  
Yakun Tang ◽  
...  

Mixed-species tree plantations have additional ecological benefits over single-species tree plantations, such as habitat restoration and increasing biodiversity. However, changes in the soil carbon, nitrogen, and phosphorus storages and stoichiometry after mixed afforestation with the N-fixing tree species under the “Grain for Green Project” in the Loess Plateau of China are not well understood. Typical restoration types, including the mixed plantations of Pinus tabuliformis with Hippophae rhamnoides (HrPt) and Robinia pseudoacacia with H. rhamnoides (HrRp), as well as the pure forests of P. tabuliformis (Pt) and R. pseudoacacia (Rp), were chosen to examine changes in the storages and stoichiometry of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) in 0–100 cm soil layers. The results showed that compared with the corresponding pure forest, HrRp significantly increased the SOC content in the 0–20 cm soil layer and the SOC storage in the 0–100 cm layer, while HrPt significantly increased the SOC content in the 0–10 cm layer, but there was no significant difference for SOC storage in the 0–100 cm layer between Pt and HrPt. Similarly, HrRp significantly increased the TN content in the 0–10 cm layer and the TN storage in the 0–100 cm layer, but there was no significant difference in TN storage between Pt and HrPt. Furthermore, HrRp significantly increased the TP content in the 0–100 cm layer and TP storage was higher than that of Rp, while there were no significant differences in TP content and storage between Pt and HrPt. In the 0–10 cm soil layer, HrRp significantly reduced C:N and increased N:P, but HrPt significantly increased C:P. In addition, compared with the pure forest, the soil physical and chemical properties had a stronger control effect on the soil storages and stoichiometric ratios in the mixed forests. In summary, compared with P. tabuliformis, the introduction of N-fixing tree species into the R. pseudoacacia forest was more conducive to the accumulation of SOC, TN, and TP reserves and the improvement of the N and P utilization efficiency. These results have important implications for the restoration of degraded vegetation and scientific management of mixed plantations on the Loess Plateau and can provide basic data for the assessment of soil quality at the regional scale.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Kai Yue ◽  
Lingling Li ◽  
Junhong Xie ◽  
Setor Kwami Fudjoe ◽  
Renzhi Zhang ◽  
...  

Nitrogen (N) is the most limiting nutrient for maize, and appropriate N fertilization can promote maize growth and yield. The effect of N fertilizer rates and timings on morphology, antioxidant enzymes, and grain yield of maize (Zea mays L.) in the Loess Plateau of China was evaluated. The four N levels, i.e., 0 (N0), 100 (N1), 200 (N2), and 300 (N3) kg ha−1, were applied at two timings (T1, one-third N at sowing and two-thirds at the six-leaf stage of maize; T2, one-third applied at sowing, six-leaf stage, and eleven-leaf stage of maize). The results show that N2 and N3 significantly increased the plant height, stem and leaf dry weight, and leaf area index of maize compared with a non-N-fertilized control (N0). The net photosynthetic rate, transpiration rate, stomatal conductance, and leaf chlorophyll contents were lower, while the intercellular carbon dioxide concentration was higher for non-fertilized plants compared to fertilized plants. The activities of peroxidase (POD) and superoxide dismutase (SOD) increased with N rate, but the difference between 200 and 300 kg ha−1 was not significant; further, the isozyme bands of POD and SOD also changed with their activities. Compared with a non-N-fertilized control, N2 and N3 significantly increased grain yield by 2.76- and 3.11-fold in 2018, 2.74- and 2.80-fold in 2019, and 2.71- and 2.89-fold in 2020, and there was no significant difference between N2 and N3. N application timing only affected yield in 2018. In conclusion, 200 kg N ha−1 application increased yield through optimizing the antioxidant enzyme system, increasing photosynthetic capacity, and promoting dry matter accumulation. Further research is necessary to evaluate the response of more cultivars under more seasons to validate the results obtained.


CATENA ◽  
2012 ◽  
Vol 95 ◽  
pp. 160-168 ◽  
Author(s):  
Xiaoxu Jia ◽  
Xiaorong Wei ◽  
Ming'an Shao ◽  
Xuezhang Li

2016 ◽  
Author(s):  
Haixin Zhang ◽  
Quanchao Zeng ◽  
Shaoshan An ◽  
Yanghong Dong ◽  
Frédéric Darboux

Abstract. Vegetation restoration was effective way of protecting soil erosion and water conservation on the Loess Plateau. Carbon fractions and enzyme activities were sensitive parameters for assessment of soil remediation through revegetation. Forest, forest steppe and grassland soils were collected at 0–5 cm and 5–20 cm soil layers in Yanhe watershed, Shaanxi Province. Urease, sucrase, alkaline phosphatase, soil organic carbon (SOC), microbial biomass carbon (MBC), easily oxidized organic carbon (EOC) and dissolved organic carbon (DOC) were measured. The results showed that carbon fraction contents and enzyme activities in the same soil layer followed the order that forest was higher than others. Carbon fraction contents and enzyme activities appeared that the 0–5 cm was higher than 5–20 cm soil layer. In addition, correlation analysis showed that urease activity was related to SOC, MBC, EOC and DOC at 0–5 cm layer; it was correlated with SOC, MBC and EOC at 5–20 cm layer. Sucrase activity had significant positive relationship with SOC, MBC and EOC. Alkaline phosphatase activity was related to EOC and DOC at 0–5 cm layer; it was correlated with MBC and EOC at 5–20 cm layer. The CCA reflected the relationship between sucrase activity and SOC. The contributions from the various forms of carbon fractions and enzyme activities as evaluated by the canonical coefficient of CV were on the order of SOC > DOC > MBC > EOC; sucrase > urease > alkaline phosphatase. Vegetation type was an important factor influencing the variation of soil enzyme activities and carbon fractions on the Loess Plateau.


2013 ◽  
Vol 61 (1) ◽  
pp. 29 ◽  
Author(s):  
Ling-Ping Zhao ◽  
Gao-Lin Wu ◽  
Zhi-Hua Shi

Offspring recruitment is an important part of population dynamics, as well as for plant-community structure and succession. One generality regarding grasses and fire is that clonal grasses tolerate fire extremely well and in most cases reach their maximum production in the immediate post-fire years. One qualification to this statement is that post-fire offspring, recruitment mode is very important. However, respective data are scare in the semiarid perennial steppe. We studied the relative importance of asexual v. sexual recruitment in the post-fire recovery in semiarid steppe on the Loess Plateau of north-western China. We observed differences in regeneration strategy after different times post-fire (burnt in 2008, burnt in 1999, and no fire history for at least 30 years). Results showed that fire significantly increased offspring recruitment numbers, but not species richness. The increase of asexual recruitment after a fire made a major contribution to the increase of total offspring number. Meanwhile, there was no significant difference for the ratio of asexual to sexual recruitment among sites with different times since fire. The asexual to sexual recruitment ratio was significantly different for different species, with some species not recruiting offspring via sexual recruitment. Our results indicated that seedling recruitment contributed little to post-fire recovery of the perennial-steppe community. Lack of sexual recruitment is not related to fire management but to inherent traits of the occurring plants.


2019 ◽  
Vol 30 (14) ◽  
pp. 1691-1698 ◽  
Author(s):  
Qinglin Chai ◽  
Zhanying Ma ◽  
Qiqi An ◽  
Gao‐Lin Wu ◽  
Xiaofeng Chang ◽  
...  

Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 285 ◽  
Author(s):  
Xiaolong Ren ◽  
Peng Zhang ◽  
Xiaoli Liu ◽  
Shahzad Ali ◽  
Xiaoli Chen ◽  
...  

Rain-harvesting planting can improve crop biomass and enhance precipitation use efficiency in rainfed semiarid areas. In this study, field trials were conducted during summer 2007–2010 to determine the impacts of different mulching patterns in rainfall harvesting planting on spring corn growth and development in a typical semihumid dryland farming area of the Loess Plateau in China, which is characterised by spring droughts. Rain-harvesting ridges and planting furrows were mulched with 8% biodegradable film (RCSB), liquid film (RCSL), or not mulched (RCSN), and bare land drilling without mulching served as the control (CF). We found that the rain-harvesting effects of ridges and the evaporation-inhibiting and moisture-conserving effects of mulching materials during the spring corn growing season significantly increased water storage in the 0–100cm soil layer (P<0.05) compared with CF, where mulching was more beneficial than the non-mulching treatments. In the 100–200cm soil layers, there were no significant effects (P>0.05) of the treatments on water storage. During 2007–2010, the average plant height increased by 26.6%, 15.4%, and 11.1% under RCSB, RCSL, and RCSN relative to CF respectively, whereas the per plant biomass increased by 26.6%, 15.4%, and 11.1% under these treatments, and the grain yield increased by 32.3%, 17.5%, and 15.0%. Therefore, in the semihumid dryland farming areas of the Loess Plateau, rain-harvesting planting greatly increased the growth, development, and dry matter accumulation by spring corn, thereby enhancing its biomass yield, whereas the plastic-covered ridges and furrows mulched with biodegradable films substantially increased the yield-enhancing effects.


CATENA ◽  
2018 ◽  
Vol 171 ◽  
pp. 185-192 ◽  
Author(s):  
Lei Deng ◽  
Kaibo Wang ◽  
Guangyu Zhu ◽  
Yulin Liu ◽  
Lei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document