scholarly journals Identification of Suitable Sites for Jatropha curcas L. Bioenergy Plantation Using the AquaCrop Model

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1772
Author(s):  
Faisal Khalid ◽  
Sami Ullah ◽  
Fariha Rehman ◽  
Rana Hadi ◽  
Nasreen Khan ◽  
...  

Jatropha curcas (JC), as a biofuel plant, has been reported to have various desired characteristics such as high oil content seeds (27–40%), fast-growth, easy cultivation, drought tolerance, and can be grown on marginal soil and wasteland, requiring fewer nutrients and management and does not interfere with existing food crops, insects, and pest resistance. This investigation was the first study of its type to use climatological data, blue/green water footprints, and JC seed production to identify suitable sites for JC bioenergy plantation using the AquaCrop FAO model across the Khyber Pakhtunkhwa province in northwest Pakistan. The JC seed yield (10 ton/ha) was at a maximum in the districts of Bannu, Karak, Hangu, Kurram, North Waziristan, Lakki Marwat, South Waziristan, and Dera Ismail Khan, in addition to its frontier regions, Tank, Peshawar, Mohmand, Orakzai, Khyber, Kohat, Charsadda, Mardan, Swabi, and Nowshera, respectively. Green water footprint (264 m3/ton of JC seed) and blue water footprint (825 m3/ton) was less in these areas. Furthermore, the results revealed that, depending on climatological circumstances, the southern part of the Khyber Pakhtunkhwa province is more appropriate for JC bioenergy plantation than the northern region. The districts of Bannu, Karak, Hangu, Kurram, North Waziristan, Lakki Marwat, South Waziristan, Dera Ismail Khan, and its frontier regions, Tank, Peshawar, Mohmand, Orakzai, Khyber, and Kohat, in Khyber Pakhtunkhwa province were identified to be the most ideal places for JC bioenergy plantation. As a result, under the Billion Tree Afforestation Project (BTAP) and the Green Pakistan Project, the Forest Department of Khyber Pakhtunkhwa should consider planting JC species in the province’s southern region. Furthermore, this research will provide scientific information to government and private sector officials for better management and optimum yield of the JC biofuel crop, as well as for the promotion of energy forestry in Pakistan.

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1198 ◽  
Author(s):  
Jinping Wang ◽  
Jinzhu Ma ◽  
Afton Clarke-Sather ◽  
Jiansheng Qu

Water shortages limit agricultural production in the world’s arid and semi-arid regions. The Northern region of China’s Shaanxi Province, in the Loess Plateau, is a good example. Raising the water productivity of rainfed grain production in this region is essential to increase food production and reduce poverty, thereby improving food security. To support efforts to increase crop water productivity (CWP), we accounted for limitations of most existing studies (experimental studies of specific crops or hydrological modeling approaches) by using actual field data derived from statistical reports of cropping patterns. We estimated the CWPs of nine primary crops grown in four counties in Northern Shaanxi from 1994 to 2008 by combining statistics on the cultivated area and yields with detailed estimates of evapotranspiration based on daily meteorological data. We further calculated both the caloric CWP of water (CCWP) and the CWP of productive water (i.e., water used for transpiration). We found that regional CWP averaged 6.333 kg mm–1 ha–1, the CCWP was 17,683.81 cal mm–1 ha–1, the CWP of productive green water was 8.837 kg mm–1 ha–1, and the CCWP of productive green water was 24,769.07 cal mm–1 ha–1. Corn, sorghum, and buckwheat had the highest CWP, and although potatoes had the largest planted area and relatively high CWP, they had a low CCWP.


2018 ◽  
Vol 9 (2) ◽  
pp. 181-194 ◽  
Author(s):  
Ashfaq Ahmad Shah ◽  
Jingzhong Ye ◽  
Lu Pan ◽  
Raza Ullah ◽  
Syed Irshad Ali Shah ◽  
...  

2018 ◽  
Vol 7 (4.35) ◽  
pp. 244
Author(s):  
Nurul Azmah Safie ◽  
M.A. Malek ◽  
Z. Z. Noor

Change in climate, increasing world population and industrialization have placed considerable stress on water availability at certain places. Water Footprint accounting is a reliable technique that can be used for a better water management. This study focuses on establishing a doable methodology on water footprint accounting and assessment for direct water consumption from domestic and institutional sectors located in an urbanized environment such as Klang Valley, Kuala Lumpur. It includes investigation of Water Footprint at domestic household, schools, colleges, terminals and offices in Klang Valley. The value of water consumption, water production and water pollution will be determined using Hoekstra’s approach for green water, blue water and grey water. In addition, findings from this study will be linked to two other elements namely energy and food. This link is named as Water-Energy-Food Nexus. This study will establish the quantity and criteria of Water-Energy-Food Nexus specifically tailored to domestic and institutional sectors in Klang Valley.


2020 ◽  
Vol 12 (13) ◽  
pp. 5274 ◽  
Author(s):  
P.X.H. Bong ◽  
M.A. Malek ◽  
N.H. Mardi ◽  
Marlia M. Hanafiah

Modern technology and life-style advancements have increased the demand for clean water. Based on this trend it is expected that our water resources will be under stress leading to a high probability of scarcity. This study aims to evaluate the environmental impacts of selected traditional food manufacturing products namely: tempe, lemang, noodle laksam, fish crackers and salted fish in Malaysia. The cradle-to-gate approach on water footprint assessment (WFA) of these selected traditional food products was carried out using Water Footprint Network (WFN) and Life Cycle Assessment (LCA). Freshwater eutrophication (FEP), marine eutrophication (MEP), freshwater ecotoxicity (FETP), marine ecotoxicity (METP) and water consumption (WCP), LCA were investigated using ReCiPe 2016 methodology. Water footprint accounting of blue water footprint (WFblue), green water footprint (WFgreen) and grey water footprint (WFgrey) were established in this study. It was found that total water footprint for lemang production was highest at 3862.13 m3/ton. The lowest total water footprint was found to be fish cracker production at 135.88 m3/ton. Blue water scarcity (WSblue) and water pollution level (WPL) of these selected food products were also determined to identify the environmental hotspots. Results in this study showed that the WSblue and WPL of these selected food products did not exceed 1%, which is considered sustainable. Based on midpoint approach adopted in this study, the characterization factors for FEP, MEP, FETP, METP and WCP on these selected food products were evaluated. It is recommended that alternative ingredients or product processes be designed in order to produce more sustainable lemang.


2018 ◽  
Vol 22 (10) ◽  
pp. 5111-5123 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively manage agricultural water resources. The water footprint is an improved index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the regional-scale water footprint of crop production based on hydrological processes, and the water footprint is quantified in terms of blue and green water. This method analyses the water-use process during the growth of crops, which includes irrigation, precipitation, groundwater, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprint of wheat, corn and sunflowers were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprint of wheat, corn and sunflowers were 1380–2888, 942–1774 and 2095–4855 m3 t−1, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprints for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further away from the irrigation gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


Sign in / Sign up

Export Citation Format

Share Document