scholarly journals Distribution, Dominance Structure, Species Richness, and Diversity of Bats in Disturbed and Undisturbed Temperate Mountain Forests

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 56
Author(s):  
Krzysztof Piksa ◽  
Tomasz Brzuskowski ◽  
Tomasz Zwijacz-Kozica

The increase in mean annual temperature and reduction in summer rainfall from climate change seem to increase the frequency of natural and human-made disturbances to forest vegetation. This type of rapid vegetation change also significantly affects bat diversity. The aim of our study was to document differences in the ecological parameters of bat assemblages in different types of temperate mountain forests, particularly between disturbed and undisturbed coniferous and deciduous forests. Additionally, these issues were considered along an elevation gradient. We mist netted bats on 73 sites, between 931 and 1453 m elevation, in the forests of the Tatra Mountains in southern Poland. During 2016–2020, 745 bats, representing 15 species, were caught. The most abundant were Myotis mystacinus (Kuhl, 1817) (53.0%) and M. brandtii (Eversmann, 1845) (21.5%). We observed differences in species diversity, elevational distribution, and dominance between different types of forests and forest zones. Species richness peaked at around 1000–1100 m elevation. The highest species richness and other indices were observed in undisturbed beech stands, although they constituted only about 2.7% of the forest area. The lowest species diversity was observed in disturbed coniferous forests, in both the lower and upper forest zone. The species richness and dominance structure of bat assemblages were also found to depend on the location above sea level. In some bat species, the sex ratio was higher at higher elevations, and differences in the sex ratio in a few bat species, between different types of forests, were observed. Our findings suggest that disturbed, beetle-killed spruce forests are an unsuitable environment for some bat species.

1970 ◽  
Vol 7 (7) ◽  
pp. 76-79 ◽  
Author(s):  
Kuber Prasad Bhatta ◽  
Ram Prasad Chaudhary

One of the easiest and the most common way to estimate the biological diversity at a place is to enumerate the organisms at species level, which helps to find the basic patterns of biodiversity at the place. A sound knowledge on floristic composition of particular area is essential to understand the resources, their sustainable use and conservation purposes. Altogether 600 specimens were collected from the Upper Manang area covering an elevation gradient of 2600m to 5200m from sea level, and of which 220 species belonging to 138 genera and 50 families were identified up to species level and used to estimate species richness. Of the total identified species, greatest diversity was found within the families Compositae and Labiatae, comprising 14 and 11 genera, respectively. Similarly, the greatest species diversity was found within the genera Potentilla (12 species) and Primula (6 species). Second order polynomial regression showed unimodal pattern of species richness along elevation gradient, showing greatest species richness between 3500m to 4000m altitude, whereas no any angiosperm species was encountered beyond 5100m. Key words: Species diversity; Grassland; Cultivated land; Manang. DOI: 10.3126/sw.v7i7.3831 Scientific World Vol.7(7) 2009 pp.76-79


2009 ◽  
Vol 20 (3) ◽  
pp. 170-178 ◽  
Author(s):  
Ewa Durska

Scuttle fly diversity in disturbed habitats was evaluated on plots in pine plantations of Poland’s Biała Forest. The assemblages present in the two years were assessed for the abundance of species, dominance structure, similarity and species richness, as well as in regard to indices of species diversity, evenness and fidelity. Megaselia brevicostalis was the first dominant on each of the three plots and in both study years. The number of species and their abundance was greatest on the turn of August and September. Most of the dominants and characteristic species are multivoltine, showing spring and late summer/autumn activity.


2019 ◽  
Author(s):  
Federico Morelli ◽  
Yanina

ContextThe negative association between elevation and species richness is a well-recognized pattern in macro-ecology. ObjectivesThe aim of this study was to investigate changes in functional evenness of breeding bird communities along an elevation gradient in Europe. MethodsUsing the bird data from the EBCC Atlas of European Breeding Birds we estimated an index of functional evenness which can be assumed as a measure of the potential resilience of communities.ResultsOur findings confirm the existence of a negative association between elevation and bird species richness in all European eco regions. However, we also explored a novel aspect of this relationship, important for conservation: Our findings provide evidence at large spatial scale of a negative association between the functional evenness (potential community resilience) and elevation, independent of the eco region. We also found that the Natura2000 protected areas covers the territory most in need of protection, those characterized by bird communities with low potential resilience, in hilly and mountainous areas.ConclusionsThese results draw attention to European areas occupied by bird communities characterized by a potential lower capacity to respond to strong ecological changes, and, therefore, potentially more exposed to risks for conservation.


Author(s):  
Panpan Chen ◽  
Huamin Liu ◽  
Zongming Wang ◽  
Dehua Mao ◽  
Cunzhu Liang ◽  
...  

Accurate monitoring of grassland vegetation dynamics is essential for ecosystem restoration and the implementation of integrated management policies. A lack of information on vegetation changes in the Wulagai River Basin restricts regional development. Therefore, in this study, we integrated remote sensing, meteorological, and field plant community survey data in order to characterize vegetation and ecosystem changes from 1997 to 2018. The residual trend (RESTREND) method was utilized to detect vegetation changes caused by human factors, as well as to evaluate the impact of the management of pastures. Our results reveal that the normalized difference vegetation index (NDVI) of each examined ecosystem type showed an increasing trend, in which anthropogenic impact was the primary driving force of vegetation change. Our field survey confirmed that the meadow steppe ecosystem increased in species diversity and aboveground biomass; however, the typical steppe and riparian wet meadow ecosystems experienced species diversity and biomass degradation, therefore suggesting that an increase in NDVI may not directly reflect ecosystem improvement. Selecting an optimal indicator or indicator system is necessary in order to formulate reasonable grassland management policies for increasing the sustainability of grassland ecosystems.


2013 ◽  
Vol 47 (4) ◽  
pp. 291-297
Author(s):  
L. A. Kolodochka ◽  
O. S. Shevchenko

Abstract In different types of substrate (soil, litter, lichens and mosses) collected at three memorial complexes (cemeteries) of Kyiv (Ukraine), 70 species from 57 genera, 34 families of oribatid mites were found. A few eurytopic species capable of tolerance to different types of pollution make up an essential part in each species complex. The species diversity and complexity of oribatid community structure at researched areas increased with distance from the city center. There was no direct relation between the degree of dominance of most common species and the cemetery’s relative remoteness from the center of the city.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Lynn M. Sosnoskie ◽  
Edward C. Luschei ◽  
Mark A. Fanning

The importance of managing weeds in seminatural habitats that are adjacent to farm fields is unclear. Weedy-margin vegetation may harbor pests or pathogens and may ALSo serve as source populations for ongoing immigration of weeds into the field. It is ALSo possible, however, that margin vegetation provides habitat for organisms that consume weed seeds or suppress the likelihood of pest or pathogen outbreak. We examined the nature of margin habitat using spatial-scaling of Weed-Species richness as an ecological assay. In 2003, we recorded the occurrence of weedy species along the perimeters of 63 fields in Wisconsin. The fields were distributed within six counties that differed in topography, geological history, local climate, and soil type and which spanned the range of variability in the agricultural landscape. We identified seven habitats that differed in geology and land use. The relationship between species richness and margin class was estimated using an analog of the power law. Additionally, we investigated broadscale correlates of habitat heterogeneity at the field level, using a modeling strategy that included additional explanatory factors logically connected to plant diversity. Using a model-confrontation approach, the survey supported the inclusion of two topographical diversity indices, elevation gradient and a field-shape index, into our model. Our broadscale survey provides information on one of a suite of important considerations needed to make decisions about the importance of managing weeds in field margins.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Angom Sarjubala Devi

AbstractThe level of soil organic carbon (SOC) fluctuates in different types of forest stands: this variation can be attributed to differences in tree species, and the variables associated with soil, climate, and topographical features. The present review evaluates the level of SOC in different types of forest stands to determine the factors responsible for the observed variation. Mixed stands have the highest amount of SOC, while coniferous (both deciduous-coniferous and evergreen-coniferous) stands have greater SOC concentrations than deciduous (broadleaved) and evergreen (broadleaved) tree stands. There was a significant negative correlation between SOC and mean annual temperature (MAT) and sand composition, in all types of forest stands. In contrast, the silt fraction has a positive correlation with SOC, in all types of tree stands. Variation in SOC under different types of forest stands in different landscapes can be due to differences in MAT, and the sand and silt fraction of soil apart from the type of forests.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
George Kazakis ◽  
Dany Ghosn ◽  
Ilektra Remoundou ◽  
Panagiotis Nyktas ◽  
Michael A. Talias ◽  
...  

High mountain zones in the Mediterranean area are considered more vulnerable in comparison to lower altitudes zones. Lefka Ori massif, a global biodiversity hotspot on the island of Crete is part of the Global Observation Research Initiative in Alpine Environments (GLORIA) monitoring network. The paper examines species and vegetation changes with respect to climate and altitude over a seven-year period (2001–2008) at a range of spatial scales (10 m Summit Area Section-SAS, 5 m SAS, 1 m2) using the GLORIA protocol in a re-survey of four mountain summits (1664 m–2339 m). The absolute species loss between 2001–2008 was 4, among which were 2 endemics. At the scale of individual summits, the highest changes were recorded at the lower summits with absolute species loss 4 in both cases. Paired t-tests for the total species richness at 1 m2 between 2001–2008, showed no significant differences. No significant differences were found at the individual summit level neither at the 5 m SAS or the 10 m SAS. Time series analysis reveals that soil mean annual temperature is increasing at all summits. Linear regressions with the climatic variables show a positive effect on species richness at the 5 m and 10 m SAS as well as species changes at the 5 m SAS. In particular, June mean temperature has the highest predictive power for species changes at the 5 m SAS. Recorded changes in species richness point more towards fluctuations within a plant community’s normal range, although there seem to be more significant diversity changes in higher summits related to aspects. Our work provides additional evidence to assess the effects of climate change on plant diversity in Mediterranean mountains and particularly those of islands which remain understudied.


2013 ◽  
Vol 41 (1) ◽  
pp. 36 ◽  
Author(s):  
Liangjun HU ◽  
Qinfeng GUO

How species diversity relates to productivity remains a major debate. To date, however, the underlying mechanisms that regulate the ecological processes involved are still poorly understood. Three major issues persist in early efforts at resolution. First, in the context that productivity drives species diversity, how the pathways operate is poorly-explained. Second, productivity  per se varies with community or ecosystem maturity. If diversity indeed drives productivity, the criterion of choosing appropriate measures for productivity is not available. Third, spatial scaling suggests that sampling based on small-plots may not be suitable for formulating species richness-productivity relationships (SRPRs). Thus, the long-standing assumption simply linking diversity with productivity and pursuing a generalizing pattern may not be robust. We argue that productivity, though defined as ‘the rate of biomass production’, has been measured in two ways environmental surrogates and biomass production leading to misinterpretations and difficulty in the pursuit of generalizable SRPRs. To tackle these issues, we developed an integrative theoretical paradigm encompassing richer biological and physical contexts and clearly reconciling the major processes of the systems, using proper productivity measures and sampling units. We conclude that loose interpretation and confounding measures of productivity may be the real root of current SRPR inconsistencies and debate.


Sign in / Sign up

Export Citation Format

Share Document