scholarly journals Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 24
Author(s):  
Vittorio Capozzi ◽  
Maria Tufariello ◽  
Nicola De Simone ◽  
Mariagiovanna Fragasso ◽  
Francesco Grieco

Winemaking depends on several elaborate biochemical processes that see as protagonist either yeasts or lactic acid bacteria (LAB) of oenological interest. In particular, LAB have a fundamental role in determining the quality chemical and aromatic properties of wine. They are essential not only for malic acid conversion, but also for producing several desired by-products due to their important enzymatic activities that can release volatile aromatic compounds during malolactic fermentation (e.g., esters, carbonyl compounds, thiols, monoterpenes). In addition, LAB in oenology can act as bioprotectors and reduce the content of undesired compounds. On the other hand, LAB can affect wine consumers’ health, as they can produce harmful compounds such as biogenic amines and ethyl carbamate under certain conditions during fermentation. Several of these positive and negative properties are species- and strain-dependent characteristics. This review focuses on these aspects, summarising the current state of knowledge on LAB’s oenological diversity, and highlighting their influence on the final product’s quality and safety. All our reported information is of high interest in searching new candidate strains to design starter cultures, microbial resources for traditional/typical products, and green solutions in winemaking. Due to the continuous interest in LAB as oenological bioresources, we also underline the importance of inoculation timing. The considerable variability among LAB species/strains associated with spontaneous consortia and the continuous advances in the characterisation of new species/strains of interest for applications in the wine sector suggest that the exploitation of biodiversity belonging to this heterogeneous group of bacteria is still rising.

2020 ◽  
Vol 71 (2) ◽  
pp. 358 ◽  
Author(s):  
J. Bautista-Gallego ◽  
E. Medina ◽  
B. Sánchez ◽  
A. Benítez-Cabello ◽  
F. N. Arroyo-López

The consumption of fermented vegetables is widespread throughout the world and represents an important component of the human diet with considerable contribution to the food supply for a world popula­tion in continuous growth. Many of the fermented vegetables share a general process which requires salting and acidification steps. Among the microorganisms responsible for fermentation, lactic acid bacteria are the most relevant with important organoleptic, quality and safety benefits. This review deals with the microbial ecology of fermented vegetables focusing on the biodiversity of lactic acid bacteria, the most important molecular tech­niques used for their identification and genotyping, their importance for the formation of biofilms as well as their use as starter cultures for obtaining high-quality and safe vegetable products.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rosanna Tofalo ◽  
Giovanna Suzzi ◽  
Giorgia Perpetuini

Flavor, composition and quality of wine are influenced by microorganisms present on the grapevine surface which are transferred to the must during vinification. The microbiota is highly variable with a prevalence of non-Saccharomyces yeasts, whereas Saccharomyces cerevisiae is present at low number. For wine production an essential step is the fermentation carried out by different starter cultures of S. cerevisiae alone or in mixed fermentation with non-Saccharomyces species that produce wines with significant differences in chemical composition. During vinification wine color can be influenced by yeasts interacting with anthocyanin. Yeasts can influence wine phenolic composition in different manners: direct interactions—cell wall adsorption or enzyme activities—and/or indirectly—production of primary and secondary metabolites and fermentation products. Some of these characteristics are heritable trait in yeast and/or can be strain dependent. For this reason, the stability, aroma, and color of wines depend on strain/strains used during must fermentation. Saccharomyces cerevisiae or non-Saccharomyces can produce metabolites reacting with anthocyanins and favor the formation of vitisin A and B type pyranoanthocyanins, contributing to color stability. In addition, yeasts affect the intensity and tonality of wine color by the action of β-glycosidase on anthocyanins or anthocyanidase enzymes or by the pigments adsorption on the yeast cell wall. These activities are strain dependent and are characterized by a great inter-species variability. Therefore, they should be considered a target for yeast strain selection and considered during the development of tailored mixed fermentations to improve wine production. In addition, some lactic acid bacteria seem to influence the color of red wines affecting anthocyanins’ profile. In fact, the increase of the pH or the ability to degrade pyruvic acid and acetaldehyde, as well as anthocyanin adsorption by bacterial cells are responsible for color loss during malolactic fermentation. Lactic acid bacteria show different adsorption capacity probably because of the variable composition of the cell walls. The aim of this review is to offer a critical overview of the roles played by wine microorganisms in the definition of intensity and tonality of wines’ color.


2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4571
Author(s):  
Antonio Morata ◽  
Iris Loira ◽  
Carmen González ◽  
Carlos Escott

Off-flavors produced by undesirable microbial spoilage are a major concern in wineries, as they affect wine quality. This situation is worse in warm areas affected by global warming because of the resulting higher pHs in wines. Natural biotechnologies can aid in effectively controlling these processes, while reducing the use of chemical preservatives such as SO2. Bioacidification reduces the development of spoilage yeasts and bacteria, but also increases the amount of molecular SO2, which allows for lower total levels. The use of non-Saccharomyces yeasts, such as Lachancea thermotolerans, results in effective acidification through the production of lactic acid from sugars. Furthermore, high lactic acid contents (>4 g/L) inhibit lactic acid bacteria and have some effect on Brettanomyces. Additionally, the use of yeasts with hydroxycinnamate decarboxylase (HCDC) activity can be useful to promote the fermentative formation of stable vinylphenolic pyranoanthocyanins, reducing the amount of ethylphenol precursors. This biotechnology increases the amount of stable pigments and simultaneously prevents the formation of high contents of ethylphenols, even when the wine is contaminated by Brettanomyces.


2021 ◽  
pp. 1-7
Author(s):  
Harutoshi Tsuda ◽  
Kana Kodama

Abstract This paper reveals the technological properties of lactic acid bacteria isolated from raw milk (colostrum and mature milk) of Wagyu cattle raised in Okayama Prefecture, Japan. Isolates were identified based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Streptococcus lutetiensis and Lactobacillus plantarum showed high acid and diacetyl-acetoin production in milk after 24 h of incubation at 40 and 30°C, respectively. These strains are thought to have potential for use as starter cultures and adjunct cultures for fermented dairy products.


LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 110982
Author(s):  
Rongxin Wen ◽  
Fangda Sun ◽  
Yan Wang ◽  
Qian Chen ◽  
Baohua Kong

2021 ◽  
Vol 9 (7) ◽  
pp. 1346
Author(s):  
Mariana Petkova ◽  
Petya Stefanova ◽  
Velitchka Gotcheva ◽  
Angel Angelov

Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.


1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


2007 ◽  
Vol 114 (3) ◽  
pp. 342-351 ◽  
Author(s):  
M. Kostinek ◽  
I. Specht ◽  
V.A. Edward ◽  
C. Pinto ◽  
M. Egounlety ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document