scholarly journals Waste Apple Pomace Conversion to Acrylic Acid: Economic and Potential Environmental Impact Assessments

Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 21
Author(s):  
Oseweuba Valentine Okoro ◽  
Lei Nie ◽  
Houman Alimoradi ◽  
Amin Shavandi

The global demand for acrylic acid (AA) is increasing due to its wide range of applications. Due to this growing demand, alternative AA production strategies must be explored to avoid the exacerbation of prevailing climate and global warming issues since current AA production strategies involve fossil resources. Investigations regarding alternative strategies for AA production therefore constitute an important research interest. The present study assesses waste apple pomace (WAP) as a feedstock for sustainable AA production. To undertake this assessment, process models based on two production pathways were designed, modelled and simulated in ASPEN plus® software. The two competing production pathways investigated included a process incorporating WAP conversion to lactic acid (LA) prior to LA dehydration to generate AA (denoted as the fermentation–dehydration, i.e., FD, pathway) and another process involving WAP conversion to propylene prior to propylene oxidation to generate AA (denoted as the thermochemical–fermentation–oxidation, i.e., TFO, pathway). Economic performance and potential environmental impact of the FD and TFO pathways were assessed using the metrics of minimum selling price (MSP) and potential environmental impacts per h (PEI/h). The study showed that the FD pathway presented an improved economic performance (MSP of AA: USD 1.17 per kg) compared to the economic performance (MSP of AA: USD 1.56 per kg) of the TFO pathway. Crucially, the TFO process was determined to present an improved environmental performance (2.07 kPEI/h) compared to the environmental performance of the FD process (8.72 kPEI/h). These observations suggested that the selection of the preferred AA production pathway or process will require a tradeoff between economic and environmental performance measures via the integration of a multicriteria decision assessment in future work.

2021 ◽  
Author(s):  
Oseweuba Okoro ◽  
Lei Nie ◽  
Houman Alimoradi ◽  
Amin Shavandi

The global demand for acrylic acid (AA) is increasing due to its wide range of applications. Due to this growing demand, alternative AA production strategies must be explored to avoid the exacerbation of prevailing climate and global warming issues since current AA production strategies involve AA production using fossil resources. Investigations on alternative strategies for AA production therefore constitute an important research interest. The present study therefore assesses waste apple pomace (WAP) as a feedstock for the sustainable AA produc-tion. To undertake this assessment, process models, based on two production pathways were designed, modelled and simulated in ASPEN plus® software. The two competing production pathways investigated include a process incorporating WAP conversion to lactic acid (LA), prior to LA dehydration to generate AA (denoted as the FD pathway) and another process involving WAP conversion to propylene, prior to propylene oxidation to generate AA (denoted as the TFO pathway). Economic and environmental performances of the FD and TFO pathways were assessed via the minimum selling price (MSP) and potential environmental impacts per h (PEI/h) metrics. The study was able to show that the FD pathway presented an improved economic performance (MSP of AA: US $1.17 per kg) performance compared to the economic performance (MSP of AA: US $1.56 per kg) of the TFO pathway. Crucially, the TFO process was shown to present an improved environmental performance (2.07 kPEI/h) compared to the environmental performance of the FD process (8.72 kPEI/h). These observations sug-gests that the selection of the preferred AA production will require a trade-off between the performance measures, and the integration of a multi-criteria decision assessment in future work.


Author(s):  
Alessandro Musacchio ◽  
Andrea Corona ◽  
Luca Cencioni ◽  
Angela Serra ◽  
Pietro Bartocci ◽  
...  

Abstract Nowadays environmental impact assessment of a new product is necessary to meet rising sustainability requirements also in the Oil & Gas and Power Generation markets, especially for industrial gas turbines. From the conceptual phase to the detailed design, engineer’s work is supported by a wide range of tools aimed to define and evaluate typical parameters such as performances, life and costs, etc. However, considering environmental impact aspects from the early stages of product development may not be easy if the involved engineers are not provided by a specific Life Cycle Assessment (LCA) knowledge. Scope of this paper is to introduce and explain the development of a methodology aimed to define and evaluate the Key Environmental Performance Factors (KEPF) during the whole design process. The proposed methodology enables easy and fast eco-design evaluations and supports sustainable design assessments. Preliminary analysis of the entire processes involved in gas turbine (GT) design and production as well as testing and commissioning phases were performed to evaluate which factors affect mostly the Carbon Footprint of each process, referred to their specific functional unit. Extrapolating the KEPF from Cradle-to-Gate LCA they can be combined with case-specific qualitative and quantitative information such as material selection, manufacturing processes, mass quantity, presence of coatings etc. to provide environmental assessments. A case study of LCA applied to a heavy-duty GT is presented to outline the relative weight of each KEPF.


2015 ◽  
Vol 119 (1211) ◽  
pp. 67-90 ◽  
Author(s):  
F. Ali ◽  
I. Goulos ◽  
V. Pachidis

AbstractThis paper aims to present an integrated multidisciplinary simulation framework, deployed for the comprehensive assessment of combined helicopter–powerplant systems at mission level. Analytical evaluations of existing and conceptual regenerative engine designs are carried out in terms of operational performance and environmental impact. The proposed methodology comprises a wide-range of individual modeling theories applicable to helicopter flight dynamics, gas turbine engine performance as well as a novel, physics-based, stirred reactor model for the rapid estimation of various helicopter emissions species. The overall methodology has been deployed to conduct a preliminary trade-off study for a reference simple cycle and conceptual regenerative twin-engine light helicopter, modeled after the Airbus Helicopters Bo105 configuration, simulated under the representative mission scenarios. Extensive comparisons are carried out and presented for the aforementioned helicopters at both engine and mission level, along with general flight performance charts including the payload-range diagram. The acquired results from the design trade-off study suggest that the conceptual regenerative helicopter can offer significant improvement in the payload-range capability, while simultaneously maintaining the required airworthiness requirements. Furthermore, it has been quantified through the implementation of a representative case study that, while the regenerative configuration can enhance the mission range and payload capabilities of the helicopter, it may have a detrimental effect on the mission emissions inventory, specifically for NOx(Nitrogen Oxides). This may impose a trade-off between the fuel economy and environmental performance of the helicopter. The proposed methodology can effectively be regarded as an enabling technology for the comprehensive assessment of conventional and conceptual helicopter-powerplant systems, in terms of operational performance and environmental impact as well as towards the quantification of their associated trade-offs at mission level.


2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


2021 ◽  
Vol 13 (6) ◽  
pp. 3092
Author(s):  
Sungwoo Lee ◽  
Sungho Tae ◽  
Hyungjae Jang ◽  
Chang U. Chae ◽  
Youngjin Bok

Eco-friendly building designs that use building information modeling (BIM) have become popular, and a variety of eco-friendly building assessment technologies that take advantage of BIM are being developed. However, existing building environmental performance assessment technologies that use BIM are linked to external assessment tools, and there exist compatibility issues among programs; it requires a considerable amount of time to address these problems, owing to the lack of experts who can operate the programs. This study aims to develop eco-friendly templates for assessing the embodied environmental impact of buildings using BIM authoring tools as part of the development of BIM-based building life cycle assessment (LCA) technologies. Therefore, an embodied environmental impact unit database was developed, for major building materials during production and operating stages, to perform embodied environmental impact assessments. Moreover, a major structural element library that uses the database was developed and a function was created to produce building environmental performance assessment results tables, making it possible to review the eco-friendliness of buildings. A case study analysis was performed to review the feasibility of the environmental performance assessment technologies. The results showed a less than 5% effective error rate in the assessment results that were obtained using the technology developed in this study compared with the assessment results based on the actual calculation and operating stage energy consumption figures, which proves the reliability of the proposed approach.


2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1664
Author(s):  
Juan Sebastián Castillo-Valero ◽  
Inmaculada Carrasco ◽  
Marcos Carchano ◽  
Carmen Córcoles

The continuous growth of the international wine trade and the expansion of international markets is having significant commercial, but also environmental, impacts. The benefits of vineyards in terms of ecosystem service provision are offset by the increase in CO2 emissions generated by transportation. Denominations of Origin, as quality labels, emphasise a wine’s links to the terroir, where specific elements of culture and environment merge together. However, Denominations of Origin can also have differentiating elements as regards environmental performance. Drawing on an extended multiregional input–output model applied to the Spanish Denominations of Origin with the largest presence in the international wine trade, this study shows that wines with the greatest exporting tradition are those that most reduced their carbon footprint per litre of exported wine in the period 2005–2018, thus being the most environmentally efficient.


2020 ◽  
Vol 24 (09) ◽  

For the month of September 2020, APBN dives into the world of 3D printing and its wide range of real-world applications. Keeping our focus on the topic of the year, the COVID-19 pandemic, we explore the environmental impact of the global outbreak as well as gain insight to the top 5 vaccine platforms used in vaccine development. Discover more about technological advancements and how it is assisting innovation in geriatric health screening.


Sign in / Sign up

Export Citation Format

Share Document