scholarly journals Securing Resource-Constrained IoT Nodes: Towards Intelligent Microcontroller-Based Attack Detection in Distributed Smart Applications

2021 ◽  
Vol 13 (11) ◽  
pp. 272
Author(s):  
Andrii Shalaginov ◽  
Muhammad Ajmal Azad

In recent years, the Internet of Things (IoT) devices have become an inseparable part of our lives. With the growing demand for Smart Applications, it becomes clear that IoT will bring regular automation and intelligent sensing to a new level thus improving quality of life. The core component of the IoT ecosystem is data which exists in various forms and formats. The collected data is then later used to create context awareness and make meaningful decisions. Besides an undoubtedly large number of advantages from the usage of IoT, there exist numerous challenges attributed to the security of objects that cannot be neglected for uninterrupted services. The Mirai botnet attack demonstrated that the IoT system is susceptible to different forms of cyberattacks. While advanced data analytics and Machine Learning have proved efficiency in various applications of cybersecurity, those still have not been explored enough in the literature from the applicability perspective in the domain of resource-constrained IoT. Several architectures and frameworks have been proposed for defining the ways for analyzing the data, yet mostly investigating off-chip analysis. In this contribution, we show how an Artificial Neural Network model can be trained and deployed on trivial IoT nodes for detecting intelligent similarity-based network attacks. This article proposes a concept of the resource-constrained intelligent system as a part of the IoT infrastructure to be able to harden the cybersecurity on microcontrollers. This work will serve as a stepping stone for the application of Artificial Intelligence on devices with limited computing capabilities such as end-point IoT nodes.

2020 ◽  
Vol 3 (2) ◽  
pp. 153-164
Author(s):  
Yulia Suryandari

The Internet of Things (IoT) has enormous potential in creating the value of life related to technology. IoT has various application domains, including in the health sector. IoT-based healthcare services are expected to reduce costs, improve quality of life, and enrich user experience. The presence of IoT devices for healthcare services can also avoid unnecessary hospitalization and ensure that patients who need health services get it quickly. This paper surveys advances in IoT-based health care technology and reviews the latest architectures / platforms, platforms, applications and industry trends in IoT-based healthcare solutions. Some IoT devices and prototypes in the healthcare field are also discussed in this paper. Through this paper, it is expected that readers can be known and discuss IoT devices in the healthcare sector.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3704 ◽  
Author(s):  
Mario Marchese ◽  
Aya Moheddine ◽  
Fabio Patrone

The Fifth Generation of Mobile Communications (5G) will lead to the growth of use cases demanding higher capacity and a enhanced data rate, a lower latency, and a more flexible and scalable network able to offer better user Quality of Experience (QoE). The Internet of Things (IoT) is one of these use cases. It has been spreading in the recent past few years, and it covers a wider range of possible application scenarios, such as smart city, smart factory, and smart agriculture, among many others. However, the limitations of the terrestrial network hinder the deployment of IoT devices and services. Besides, the existence of a plethora of different solutions (short vs. long range, commercialized vs. standardized, etc.), each of them based on different communication protocols and, in some cases, on different access infrastructures, makes the integration among them and with the upcoming 5G infrastructure more difficult. This paper discusses the huge set of IoT solutions available or still under standardization that will need to be integrated in the 5G framework. UAVs and satellites will be proposed as possible solutions to ease this integration, overcoming the limitations of the terrestrial infrastructure, such as the limited covered areas and the densification of the number of IoT devices per square kilometer.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 309 ◽  
Author(s):  
Hind Bangui ◽  
Said Rakrak ◽  
Said Raghay ◽  
Barbora Buhnova

Cloud computing has significantly enhanced the growth of the Internet of Things (IoT) by ensuring and supporting the Quality of Service (QoS) of IoT applications. However, cloud services are still far from IoT devices. Notably, the transmission of IoT data experiences network issues, such as high latency. In this case, the cloud platforms cannot satisfy the IoT applications that require real-time response. Yet, the location of cloud services is one of the challenges encountered in the evolution of the IoT paradigm. Recently, edge cloud computing has been proposed to bring cloud services closer to the IoT end-users, becoming a promising paradigm whose pitfalls and challenges are not yet well understood. This paper aims at presenting the leading-edge computing concerning the movement of services from centralized cloud platforms to decentralized platforms, and examines the issues and challenges introduced by these highly distributed environments, to support engineers and researchers who might benefit from this transition.


Author(s):  
Santosh Pandurang Jadhav

The Internet of Things (IoT) is becoming the most relevant next Internet-related revolution in the world of Technology. It permits millions of devices to be connected and communicate with each other. Beside ensuring reliable connectivity their security is also a great challenge. Abounding IoT devices have a minimum of storage and processing capacity and they usually need to be able to operate on limited power consumption. Security paths that depend maximum on encryption are not good for these resource constrained devices, because they are not suited for performing complicated encryption and decryption tasks quickly to be able to transmit data securely in real-time. This paper contains an overview of some of the cryptographic-based schemes related to communication and computational costs for resource constrained devices and considers some approaches towards the development of highly secure and lightweight security mechanisms for IoT devices.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-28
Author(s):  
Siddhartha Vadlamudi

The evolvement of IT has open new doors in connecting many devices to the worldwide web that successively produce data around the physical setting using the IoT. However, the system of message turns out to be slightly intricate in human specialization-internet of things communication for the reason that the IoT is a system including diverse objects transferring data This study examines the hypothetical pathway by which the changes in source attribution that is multiple against single and specialization that is multi-functionality against single functionality of IoT devices affect the quality of human- internet of things interaction. The result from the study obtained from 80 participants that took part in the experiment shows that multiple source attribution improves the condition of information basically for the low-involvement people supports further probes the multiple source effects. However, this study recommends improvement of attribution source and human specialization-IoT.


2020 ◽  
Vol 14 (1) ◽  
pp. 57-63
Author(s):  
Andrés Armando Sánchez Martin ◽  
Luis Eduardo Barreto Santamaría ◽  
Juan José Ochoa Ortiz ◽  
Sebastián Enrique Villanueva Navarro

One of the difficulties for the development and testing of data analysis applications used by IoT devices is the economic and temporary cost of building the IoT network, to mitigate these costs and expedite the development of IoT and analytical applications, it is proposed NIOTE, an IoT network emulator that generates sensor and actuator data from different devices that are easy to configure and deploy over TCP/IP and MQTT protocols, this tool serves as support in academic environments and conceptual validation in the design of IoT networks. The emulator facilitates the development of this type of application, optimizing the development time and improving the final quality of the product. Object-oriented programming concepts, architecture, and software design patterns are used to develop this emulator, which allows us to emulate the behavior of IoT devices that are inside a specific network, where you can add the number of necessary devices, model and design any network. Each network sends data that is stored locally to emulate the process of transporting the data to a platform, through a specific format and will be sent to perform Data Analysis.


2019 ◽  
Vol 11 (6) ◽  
pp. 127 ◽  
Author(s):  
Michele De Donno ◽  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Antonio Bucchiarone ◽  
Manuel Mazzara

The Internet of Things (IoT) is rapidly changing our society to a world where every “thing” is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on the security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds.


Author(s):  
Yong Kyu Lee

This chapter reviews the internet of things (IoT) as a key component of a smart city and how it is applied to consumers' daily lives and business. The IoT is a part of information and communication technology (ICT) and is considered a powerful means to improve consumers' quality of life. The “thing” could be any object which has internet capability, such as wearable devices and smart TVs/phones/speakers. Several studies have identified driving factors that have led consumers to adopting them, but also concerns of consumers' resistance to IoT devices. The three major fields of application of IoT technologies were selected to review the role of the IoT in consumers' daily lives and business.


Author(s):  
Basheer Al-Duwairi ◽  
Wafaa Al-Kahla ◽  
Mhd Ammar AlRefai ◽  
Yazid Abedalqader ◽  
Abdullah Rawash ◽  
...  

The Internet of Things (IoT) is becoming an integral part of our daily life including health, environment, homes, military, etc. The enormous growth of IoT in recent years has attracted hackers to take advantage of their computation and communication capabilities to perform different types of attacks. The major concern is that IoT devices have several vulnerabilities that can be easily exploited to form IoT botnets consisting of millions of IoT devices and posing significant threats to Internet security. In this context, DDoS attacks originating from IoT botnets is a major problem in today’s Internet that requires immediate attention. In this paper, we propose a Security Information and Event Management-based IoT botnet DDoS attack detection and mitigation system. This system detects and blocks DDoS attack traffic from compromised IoT devices by monitoring specific packet types including TCP SYN, ICMP and DNS packets originating from these devices. We discuss a prototype implementation of the proposed system and we demonstrate that SIEM based solutions can be configured to accurately identify and block malicious traffic originating from compromised IoT devices.


Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 20-25
Author(s):  
Y. Avakyan ◽  
R. Kirichek ◽  
V. Kulik

This paper discusses methods for testing data channels under a functional load of traffic generated by devices and applications of the Internet of things. The research of data channels is carried out according to the following quality of service parameters: throughput, network latency, network jitter, packet loss percentage. To measure these parameters, it is proposed to use the following types of testing: stress testing, benchmark testing. A model network including devices and application of the Internet of things was developed to define functional load models. The considered methods can be used to develop sys-tems for testing data channels of the Internet of things.


Sign in / Sign up

Export Citation Format

Share Document