scholarly journals Degradation of Wheat Germ Agglutinin during Sourdough Fermentation

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 340
Author(s):  
Luis E. Rojas Tovar ◽  
Michael G. Gänzle

Non Celiac Wheat Sensitivity (NCWS) is an intolerance to wheat products and individuals with NCWS often adhere to a gluten free diet. However, gluten free diets are often associated with a reduced sensory and nutritional quality. Wheat Germ Agglutinin (WGA) is one of the wheat components linked to NCWS. This study explored the fate of WGA during sourdough fermentation. To assess the role of thiol-exchange reactions and proteolysis, sourdoughs were fermented with Fructilactobacillus sanfranciscensis DSM20451, F. sanfranciscensis DSM20451ΔgshR, which lacks glutathione reductase activity, or Latilactobacillus sakei TMW1.22, with or without addition of fungal protease. The conversion of WGA was determined by size exclusion chromatography of fluorescence-labeled WGA, and by enzyme-linked immunosorbent assay (ELISA). Commercial whole wheat flour contained 6.6 ± 0.7 μg WGA/g. After fermentation with L. sakei TMW1.22 and F. sanfranciscensis DSM20451, the WGA content was reduced (p < 0.05) to 2.7 ± 0.4 and 4.3 ± 0.3 μg WGA/g, respectively, while the WGA content remained unchanged in chemically acidified controls or in doughs fermented with F. sanfranciscensis DSM20451ΔgshR. Protease addition did not affect the WGA content. In conclusion, the fate of WGA during sourdough fermentation relates to thiol-exchange reactions but not to proteolytic degradation.

1993 ◽  
Vol 39 (3) ◽  
pp. 291-296 ◽  
Author(s):  
Paul J. Henningson ◽  
Neil C. Gudmestad

The exopolysaccharides produced by six strains of Clavibacter michiganensis ssp. sepedonicus were isolated and purified by liquid chromatography. Neutral sugar composition and molecular weights were determined for each polysaccharide fraction, using gas chromatography and high-performance size-exclusion chromatography. The serological reaction of each fraction was tested using enzyme-linked immunosorbent assay. Exopolysaccharide from nonmucoid strains contained only low molecular weight polysaccharides (1.5 × 103 to 1.1 × 104). Exopolysaccharide from mucoid and intermediate strains could be separated into low (4.0 × 103 to 1.1 × 104) molecular weight and high (5.0 × 105 to 1.6 × 106) molecular weight fractions. High molecular weight polysaccharides were composed almost exclusively of galactose, glucose, and fucose. The ratios of these sugars were highly variable among strains. Low molecular weight polysaccharides were primarily composed of galactose with significant and varying amounts of glucose, rhamnose, mannose, and ribose. All polysaccharide fractions except one, produced by a nonmucoid strain, reacted in the immunoassay test.Key words: exopolysaccharide, polysaccharide, Clavibacter, michiganensis, sepedonicus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marija Holcar ◽  
Jana Ferdin ◽  
Simona Sitar ◽  
Magda Tušek-Žnidarič ◽  
Vita Dolžan ◽  
...  

AbstractHuman plasma is a complex fluid, increasingly used for extracellular vesicle (EV) biomarker studies. Our aim was to find a simple EV-enrichment method for reliable quantification of EVs in plasma to be used as biomarker of disease. Plasma of ten healthy subjects was processed using sedimentation rate- (sucrose cushion ultracentrifugation—sUC) and size- (size exclusion chromatography—SEC) based methods. According to nanoparticle tracking analysis (NTA), asymmetrical flow field-flow fractionation coupled to detectors (AF4-UV-MALS), miRNA quantification, transmission electron microscopy and enzyme-linked immunosorbent assay, enrichment of EVs from plasma with sUC method lead to high purity of EVs in the samples. High nanoparticle concentrations after SEC resulted from substantial contamination with lipoproteins and other aggregates of EV-like sizes that importantly affect downstream EV quantification. Additionally, sUC EV-enrichment method linked to quantification with NTA or AF4-UV-MALS is repeatable, as the relative standard deviation of EV size measured in independently processed samples from the same plasma source was 5.4% and 2.1% when analyzed by NTA or AF4-UV-MALS, respectively. In conclusion, the sUC EV-enrichment method is compatible with reliable measurement of concentration and size of EVs from plasma and should in the future be tested on larger cohorts in relation to different diseases. This is one of the first studies using AF4-UV-MALS to quantify EVs in blood plasma, which opens new possible clinical utility for the technique.


2022 ◽  
Author(s):  
Shavron Hada ◽  
Jae Chul Lee ◽  
Eun Chae Lee ◽  
Sunkyong Ji ◽  
Jeong Sun Nam ◽  
...  

Abstract Biophysical characterization of type A botulinum neurotoxin (BoNT/A) complex along with its thermodynamic stability was assessed through a combination of various methods. BoNT/A exists as large complexes in association with neurotoxin associated proteins (NAPs). To evaluate its biophysical behavior, size-exclusion chromatography (SEC), multi-angled light scattering (MALS), enzyme linked immunosorbent assay (ELISA), and dynamic light scattering (DLS) were utilized. Initially, a single peak (peak 1) of SEC was observed at pH 6.0, and an additional peak (peak 2) appeared at pH 7.4 with a decrement of peak 1. Through MALS and ELISA, the peak 2 was determined to be BoNT/A dissociated from its complex. The dissociation was accelerated by time and temperature. At 37°C, dissociated BoNT/A self-associated at pH 7.4 in the presence of polysorbate 20. On the other hand, the dissociation was partly reversible when titrated back to pH 6.0. Overall, BoNT/A was more stable when associated with NAPs at pH 6.0 compared to its dissociated state at pH 7.4. The conventional analytical methods could be utilized to relatively quantify its amount in different formulations.


1979 ◽  
Vol 39 (1) ◽  
pp. 101-116
Author(s):  
L. Winqvist ◽  
L.C. Eriksson ◽  
G. Dallner

The interaction of glycoproteins of rough and smooth microsomal and Golgi membranes with Sepharose-bound lectins has been studied. One of these lectins was a crude preparation from wheat germ lipase which was found to bind primarily to N-acetyl neuraminic acid. Rough microsomes, smooth microsomes and Golgi membranes contain glycoproteins which bind to Concanavalin A (Con A specific for mannose residues) in decreasing amounts in the order indicated (rough, smooth and Golgi) and to wheat germ agglutinin (WGA, glucosamine-specific) and to the crude lipase preparation in increasing amounts in the order indicated. The small amount of binding of rough microsomes and Golgi membranes to Crotalaria (galactose-specific) increases substantially after neuraminidase treatment. Three submicrosomal particle preparations enriched either in AMPase or in NADH- or NADPH-oxidizing electron-transport enzymes contain glycoproteins which bind Con A and wheat germ agglutinin. The latter binding is sensitive to neuraminidase treatment. Two other submicrosomal particle preparations, both enriched in glucose-6-phosphatase activity, bind preferentially to WGA. This binding is, however, not sensitive to neuraminidase. Prolonged incubation with Ervilia lectin (mannose-specific) inhibits NADH-ferricyanide reductase activity, while the electron-transport chain involving cytochrome b5 is also inhibited by Crotalaria, indicating that both the flavoprotein and the cytochrome b5 are glycoproteins whose oligosaccharide chains have terminal mannose or galactose residues.


Biologia ◽  
2010 ◽  
Vol 65 (5) ◽  
Author(s):  
Jana Korcová ◽  
Eva Machová ◽  
Pavol Farkaš ◽  
Slavomír Bystrický

AbstractO135 serotype Vibrio cholerae isolated from Slovak river was used as a source of surface polysaccharide antigens. Following detoxification procedure, fractions of polysaccharides were separated by size exclusion chromatography. Two resultant fractions were the capsular polysaccharide (M w ∼ 197,000 Da) and the lipopolysaccharide fragment (M w ∼ 13,300 Da). These materials were used for preparation of four novel glycoconjugates. Two of them containing detoxified lipopolysaccharide as antigen were prepared by original chemical method using the new biocompatible polymer as carrier of antigen. Additionally, other two conjugates were prepared by direct linking of capsular and detoxified lipopolysaccharide antigens to the protein carrier using adipic acid dihydrazide spacer. The immunogenicities (induced IgM, IgG, IgA antibodies) of all conjugates were determined by enzyme-linked immunosorbent assay. Polymer containing conjugates elicited higher levels of specific anti-lipopolysaccharide IgM and IgG antibodies in comparison with other conjugates without polymer carrier. Enhanced IgM vibriocidal activity of mice antisera was also evident here.


2016 ◽  
Vol 311 (2) ◽  
pp. E302-E309 ◽  
Author(s):  
Nicolai J. Wewer Albrechtsen ◽  
Rune E. Kuhre ◽  
Johanne A. Windeløv ◽  
Anne Ørgaard ◽  
Carolyn F. Deacon ◽  
...  

Glucagon is a metabolically important hormone, but many aspects of its physiology remain obscure, because glucagon secretion is difficult to measure in mice and rats due to methodological inadequacies. Here, we introduce and validate a low-volume, enzyme-linked immunosorbent glucagon assay according to current analytical guidelines, including tests of sensitivity, specificity, and accuracy, and compare it, using the Bland-Altman algorithm and size-exclusion chromatography, with three other widely cited assays. After demonstrating adequate performance of the assay, we measured glucagon secretion in response to intravenous glucose and arginine in anesthetized mice (isoflurane) and rats (Hypnorm/midazolam). Glucose caused a long-lasting suppression to very low values (1–2 pmol/l) within 2 min in both species. Arginine stimulated secretion 8- to 10-fold in both species, peaking at 1–2 min and returning to basal levels at 6 min (mice) and 12 min (rats). d-Mannitol (osmotic control) was without effect. Ketamine/xylazine anesthesia in mice strongly attenuated ( P < 0.01) α-cell responses. Chromatography of pooled plasma samples confirmed the accuracy of the assay. In conclusion, dynamic analysis of glucagon secretion in rats and mice with the novel accurate sandwich enzyme-linked immunosorbent assay revealed extremely rapid and short-lived responses to arginine and rapid and profound suppression by glucose.


2015 ◽  
Vol 33 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Peter R. Gibson ◽  
Jane G. Muir ◽  
Evan D. Newnham

Background: While it is well documented and widely appreciated that ingestion of wheat (and less so rye and barley) is associated with gastrointestinal symptoms such as bloating or abdominal pain, the component of wheat to which such an effect is attributed is less well established. Key Messages: Wheat is a complex of proteins (80% gluten, 20% metabolic proteins), carbohydrates (starch, non-starch polysaccharides, fructans), lipids and other components. The majority of attention has focused on gluten as the culprit in triggering symptoms, but re-challenge studies have nearly all used wheat flour-related products (such as bread) as the stimulus. When carbohydrate-deplete gluten was used as the challenge agent, gluten-specific feelings of depression and not gut symptoms were observed in those who fulfilled strict criteria of ‘non-coeliac gluten sensitivity', thereby underlining the complexity of cereals and of undertaking research in this area. Candidate components other than gluten include poorly absorbed oligosaccharides (mainly fructans), non-gluten wheat proteins such as amylase-trypsin inhibitors or wheat germ agglutinin, and exorphins released during the digestion of gluten. Specific biological and/or clinical effects associated with gluten-free diets or wheat ingestion need to be carefully dissected before attribution to gluten can be claimed. Conclusions: Currently, coeliac disease is the only common condition that has been unequivocally linked to gluten. Inaccurate attribution will be associated with suboptimal therapeutic advice and at least partly underlies the current gluten-free epidemic gripping the Western world.


1989 ◽  
Vol 62 (02) ◽  
pp. 815 ◽  
Author(s):  
Marjorie B Zucker ◽  
Robert A Grant ◽  
Evelyn A Mauss

2009 ◽  
Vol 32 (6S) ◽  
pp. 3
Author(s):  
A Baass ◽  
H Wassef ◽  
M Tremblay ◽  
L Bernier ◽  
R Dufour ◽  
...  

Introduction: LCAT (lecithin:cholesterol acyltransferase ) is an enzyme which plays an essential role in cholesterol esterification and reverse cholesterol transport. Familial LCAT deficiency (FLD) is a disease characterized by a defect in LCAT resulting in extremely low HDL-C, premature corneal opacities, anemia as well as proteinuria and renal failure. Method: We have identified two brothers presenting characteristics of familial LCAT deficiency. We sequenced the LCAT gene, measured the lipid profile as well as the LCAT activity in 15 members of this kindred. We also characterized the plasma lipoproteins by agarose gel electrophoresis and size exclusion chromatography and sequenced several candidate genes related to dysbetalipoproteinemia in this family. Results: We have identified the first French Canadian kindred with familial LCAT deficiency. Two brothers affected by FLD, were homozygous for a novel LCAT mutation. This c.102delG mutation occurs at the codon for His35 causing a frameshift that stops transcription at codon 61 abolishing LCAT enzymatic activity both in vivo and in vitro. It has a dramatic effect on the lipoprotein profile, with an important reduction of HDL-C in both heterozygotes (22%) and homozygotes (88%) and a significant decrease in LDL-C in heterozygotes (35%) as well as homozygotes (58%). Furthermore, the lipoprotein profile differed markedly between the two affected brothers who had different APOE genotypes. We propose that APOE could be an important modifier gene explaining heterogeneity in lipoprotein profiles observed among FLD patients. Our results suggest that a LCAT-/- genotype associated with an APOE ?2 allele could be a novel mechanism leading to dysbetalipoproteinemia.


Sign in / Sign up

Export Citation Format

Share Document