Alternative energy efficient membrane bioreactor using reciprocating submerged membrane

2014 ◽  
Vol 70 (12) ◽  
pp. 1998-2003 ◽  
Author(s):  
J. Ho ◽  
S. Smith ◽  
H. K. Roh

A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m2/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m3 permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m3). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

2015 ◽  
Vol 72 (6) ◽  
pp. 917-927 ◽  
Author(s):  
Jaeho Ho ◽  
Shaleena Smith ◽  
Gyu Dong Kim ◽  
Hyung Keun Roh

This study compared and evaluated the performance of a conventional membrane bioreactor (MBR) and a novel reciprocation MBR (rMBR) which used mechanical membrane reciprocation in place of membrane air scouring in pilot-scale tests. Each system was independently operated for 280 days at a local wastewater treatment plant for a parallel assessment of operating performance. The rMBR was found to be more effective than the MBR with regard to operating performance and energy consumption. Inertial forces created by the reciprocating motion shook foulants from the membrane surface. In addition, because of the looseness of the fibers, they moved relative to each other during reciprocation thus preventing sludge clogging inside the fiber bundle. Because the rMBR does not use aeration for membrane cleaning, the membrane tank in the rMBR maintained anoxic conditions, allowing endogenous denitrification in the membrane tank. The rMBR permeate contained an average of 1.7 mg/L total nitrogen (TN) with less than 1 mg/L NO3-N, while the TN concentration in the MBR permeate averaged 5 mg/L with 3.5 mg/L NO3-N. The specific energy consumption for membrane reciprocation in the rMBR was 0.064 kWh/m3, while that for air scouring in the MBR was 0.19 kWh/m3.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
Guihe Tao ◽  
Kiran Kekre ◽  
Maung Htun Oo ◽  
Bala Viswanath ◽  
Aliman MD Yusof ◽  
...  

One of the major components of MBR operating expenditure is energy consumption. This paper presents our six-year journey of energy reduction and optimization in MBR systems through various pilot and demonstration studies. Through comprehensive and systematic MBR optimisation studies, the specific energy consumption was reduced from 1.3 kWh m−3 to less than 0.8 kWh m−3 by increasing membrane flux and reducing aeration at 300 m3 per day pilot scale plants. Through energy audit, the key energy consumption components including process aeration, membrane scouring rate, SRT, MLSS level, MLSS recirculation, and energy efficient equipment selection were identified, and these were optimised one by one at 23,000 m3 per day municipal scale MBR demonstration plant after the baseline had been set up. The specific energy consumption was further reduced to 0.37 kWh m−3.


Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 104 ◽  
Author(s):  
Simon Judd ◽  
Albert Odai ◽  
Pompilia Buzatu ◽  
Hazim Qiblawey

The impact of the application of mechanically-imposed shear on the propensity for fouling and clogging (or “sludging”—the agglomeration of sludge solids in the membrane channel) of an immersed flat sheet (iFS) membrane bioreactor (MBR) was studied. The bench-scale test cell used contained a single flat sheet fitted with a crank and motor to allow the membrane to be oscillated (or reciprocated) vertically at a low rate (20 RPM). The membrane was challenged with sludge samples from a local MBR installation treating petroleum industry effluent, the sludge having previously been demonstrated as having a high sludging propensity. Sludging was measured by direct visual observation of membrane surface occlusion by the agglomerated solids, with fouling being notionally represented by the rate of transmembrane pressure increase. Results demonstrated membrane reciprocation to have a more beneficial impact on sludging amelioration than on suppressing fouling. Compared with the stationary membrane, sludging was reduced by an average of 45% compared with only 13% for fouling suppression at the reference flux of 15 L·m−2·h−1 applied. The specific energy demand of the mechanical shear application was calculated as being around 0.0081 kWh·m−3, significantly lower than values reported from a recent pilot scale study on a reciprocated immersed hollow fibre MBR. Whilst results appear promising in terms of energy efficiency, it is likely that the mechanical complexity of applying membrane movement would limit the practical application to low flows, and a correspondingly small number of membrane modules.


1997 ◽  
Vol 36 (12) ◽  
pp. 259-266 ◽  
Author(s):  
C. Visvanathan ◽  
Byung-Soo Yang ◽  
S. Muttamara ◽  
R. Maythanukhraw

The optimum air backflushing and filtration cycle was investigated for a 0.1 μm hollow fiber membrane module immersed in an activated sludge aeration tank. It was found that 15 minutes filtration and 15 minutes air backflushing gave the best result both in terms of flux stability and net cumulative permeate volume. Although this cyclic operation could not completely remove the clogging, this process improved the flux by up to 371% compared to the continuous operation. During the long term runs, three different hydraulic retention times (HRT) of 12, 6 and 3 hours, corresponding to 0.16, 0.32 and 0.64 m3/m2.d of permeate flux respectively, were investigated. Stable operation was obtained at the HRT of 12 hours. Decrease in HRT led to rapid formation of a compact cake layer on the membrane surface thus increasing the transmembrane pressure. It was also noted that filtration pressure increases with increase in bioreactor MLSS concentration. With operation time, the MLVSS/MLSS value decreased without significant effect on the process performance, indicating that inorganic mass constantly accumulated in the bioreactor. All the experimental runs produced more than 90% removal of COD, and TKN. In terms of physical, chemical, biological and bacteriological parameters, the membrane bioreactor effluent was superior to the conventional activated sludge process.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 692
Author(s):  
Roland Schopf ◽  
Florian Schmidt ◽  
Johanna Linner ◽  
Ulrich Kulozik

The fractionation efficiency of hollow fiber membranes (HFM) for milk protein fractionation was compared to ceramic tubular membranes (CTM) and spiral wound membranes (SWM). HFM combine the features of high membrane packing density of SWM and the more defined flow conditions and better control of membrane fouling in the open flow channel cross-sections of CTM. The aim was to comparatively analyze the effect of variations in local pressure and flow conditions while using single industrially sized standard modules with similar dimensions and module footprints (module diameter and length). The comparative assessment with varied transmembrane pressure was first applied for a constant feed volume flow rate of 20 m3 h−1 and, secondly, with the same axial pressure drop along the modules of 1.3 bar m−1, similar to commonly applied crossflow velocity and wall shear stress conditions at the industrial level. Flux, transmission factor of proteins (whey proteins and serum caseins), and specific protein mass flow per area membrane and per volume of module installed were determined as the evaluation criteria. The casein-to-whey protein ratios were calculated as a measure for protein fractionation effect. Results obtained show that HFM, which so far are under-represented as standard module types in industrial dairy applications, appear to be a competitive alternative to SWM and CTM for milk protein fractionation.


2005 ◽  
Vol 51 (10) ◽  
pp. 327-334 ◽  
Author(s):  
A. Bick ◽  
J.G.P. Tuttle ◽  
S. Shandalov ◽  
G. Oron

In many regions dairy farms and milk processing industries discharge large quantities of their wastes to the surroundings posing serious environmental risks. This problem is mostly faced in small dairy farms and isolated communities lacking both central collection and conventional wastewater treatment systems. Dairy wastewater is characterized by high concentrations of organic matter, solids, nutrients, as well as fractions of dissolved inorganic pollutants, exceeding those levels considered typical for high strength domestic wastewaters. With the purpose of treating the combined dairy and domestic wastewater from a small dairy farm in the Negev Desert of Israel, the use of a recent emerging technology of Immersed Membrane BioReactor (IMBR) was evaluated over the course of 500 test hours, under a variety of wastewater feed quality conditions (during the test periods, the feed BOD5 ranged from 315 ppm up to 4,170 ppm). The overall performance of a pilot-scale Ultrafiltration (UF) IMBR process for a combined domestic and dairy wastewater was analyzed based on the Data Envelopment Analysis (DEA) method. The IMBR performance in terms of membrane performance (permeate flux, transmembrane pressure, and organic removal) and DEA model (Technical Efficiency) was acceptable. DEA is an empirically based methodology and the research approach has been found to be effective in the depiction and analysis for complex systems, where a large number of mutual interacting variables are involved.


2010 ◽  
Vol 61 (9) ◽  
pp. 2267-2272 ◽  
Author(s):  
J. Kim ◽  
T. I. Yoon

The formation of inorganic fouling on MF membrane was investigated in membrane bioreactor (MBR) treating industrial wastewater. Membrane autopsy works using microscopic techniques and surface analysis were carried out at the completion of pilot-scale operation to analyze foulant materials extensively. Scaling occurred on the membrane surface significantly in the MBR treating calcium-rich wastewater (LSI > 2.0). Our experiments showed that the coverage of the membrane surface by the inorganic fouling consisted mostly of calcium while the internal fouling within membrane pores due to the scale formation was almost negligible. Most of calcium was rejected on the MF membrane surface as scale formation of calcium carbonate (>90% as rejection). The sequence sodium hypochlorite-citric acid for the removal of membrane scale was more effective than the sequence citric acid-sodium hypochlorite cleaning. It appeared that the structure of organic compounds combined with calcium became loose by the addition of the sodium hypochlorite, thereby releasing calcium more easily from the membrane by applying the acid cleaning agent.


2012 ◽  
Vol 27 (4) ◽  
pp. 702-706 ◽  
Author(s):  
Stefan Anderssou ◽  
Christer Sandberg ◽  
Per Engstrand

Abstract The aim of this study was to investigate the influence of lang fibre concentration on Ioadability and pulp properties during LC refming of mechanical pulp. Lang fibre concentration was adjusted to three different Ievels by screen fractionation of the pulp. The three pulps were refined in a single disc pilot scale LC refiner at simi1ar process conditions. Increased lang fibre concentration suppmied a larger refiner gap and resulted in less fibre . cutting at a given specific energy consumption. The higher lang fibre concentration probably contributed to a stronger fibre network that maintained a !arger refining gap at certain specific energy consumption. Increased long fibre concentration also enabled a higher tensile index increase in the LC refmer at certain fibre length reduction. The study supports a process combining LC refining with screen fractionation, where the lang fibre fraction is recycled to the refiner feed. This enables a . higher Ioadability and a more effective utilisation of the LC refiner. By using this technology, overall specific energy consumption can be reduced if a !arger share of the refining is performed in LC rather than HC refining.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2804
Author(s):  
Dong-Ho Kim ◽  
Changkyoo Choi ◽  
Chulmin Lee ◽  
Rusnang Syamsul Adha ◽  
Thanh-Tin Nguyen ◽  
...  

Roughing filters are types of porous media filter used in pretreatment systems where the raw water contains a large amount of suspended particles (SPs) and organic matter. Mesh tube filtration (MTF) media are roughing-filter media composed of low-density polyethylene used for SP removal during wastewater treatment. In this study, we present an improved MTF design—a porous filter bed (PFB), which exhibits superior SP removal performance compared to conventional MTF media. We then compare the applicability of MTF and PFB to both the primary pretreatment process for seawater desalination and the water reuse process. In bench-scale SP removal experiments, PFB shows removal rates of 46.7%, 68.0%, 67.6%, and 68.4% at hydraulic retention times of 15, 20, 30, and 60 min, respectively, which are better than those of MTF. The specific energy consumption (SEC) of batch dissolved air flotation (DAF) was known to range from 0.035 to 0.047 kWh/m3, whereas the SEC calculated for pilot-scale MTF and PFB is 0.027 kWh/m3 and minimum energy for influent supply, respectively. This suggests that PFB can compete with DAF as a primary pretreatment process. MTF predominantly removes SPs by sedimentation, whereas SP removal in PFB typically occurs via deposition of SPs on the mesh tube media.


2019 ◽  
Vol 79 (3) ◽  
pp. 448-457 ◽  
Author(s):  
Kyoko Yamashita ◽  
Hiroki Itokawa ◽  
Toshikazu Hashimoto

Abstract Membrane bioreactors (MBRs) have the advantages of achieving excellent effluent quality, a small footprint and smooth operation and maintenance. On the other hand, its high energy consumption remains a critical challenge for MBR application. Japan Sewage Works Agency has conducted a series of joint researches with several private companies since 2012 and developed four kinds of energy-saving MBR systems. Based on the results of long-term pilot-scale demonstrations, specific energy consumption (SEC) per unit treated effluent volume was calculated for each MBR system, resulting in all systems achieving SEC of 0.4 kWh/m3 or less. To meet an additional requirement for expanding MBR application, it is also necessary to establish the applicability of MBR systems to combined sewer systems, suffering from occasional inflow fluctuation caused by rainfall. The capability of temporary higher flux operation during and after rainy weather was also demonstrated with three of the four developed systems.


Sign in / Sign up

Export Citation Format

Share Document