scholarly journals Albedo- and Flavedo-Specific Transcriptome Profiling Related to Penicillium digitatum Infection in Citrus Fruit

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2196
Author(s):  
María Teresa Lafuente ◽  
Paco Romero ◽  
Luis González-Candelas

Penicillium digitatum is the main postharvest pathogen of citrus fruit. Although the inner fruit peel part (albedo) is less resistant than the outer part (flavedo) to P. digitatum, the global mechanisms involved in their different susceptibility remain unknown. Here, we examine transcriptome differences between both tissues at fruit harvest and in their early responses to infection. At harvest, not only was secondary metabolism, involving phenylpropanoids, waxes, and terpenoids, generally induced in flavedo vs. albedo, but also energy metabolism, transcription factors (TFs), and biotic stress-related hormones and proteins too. Flavedo-specific induced responses to infection might be regulated in part by ERF1 TF, and are related to structural plant cell wall reinforcement. Other induced responses may be related to H2O2, the synthesis of phenylpropanoids, and the stress-related proteins required to maintain basal defense responses against virulent pathogens, whereas P. digitatum represses some hydrolase-encoding genes that play different functions and auxin-responsive genes in this peel tissue. In infected albedo, the repression of transport and signal transduction prevail, as does the induction of not only the processes related to the synthesis of flavonoids, indole glucosinolates, cutin, and oxylipins, but also the specific genes that elicit plant immunity against pathogens.

2022 ◽  
Vol 8 (1) ◽  
pp. 80
Author(s):  
Yongmei Li ◽  
Mengyuan Xia ◽  
Pengbo He ◽  
Qiaoming Yang ◽  
Yixin Wu ◽  
...  

Citrus is among the most important plants in the fruit industry severely infected with pathogens. Citrus green mold caused by Penicillium digitatum is one of the most devastating diseases during post-harvest stages of citrus fruit. In this study, a potential endophyte Bacillus subtilis L1-21, isolated from healthy citrus plants, was assessed for its biocontrol activity against the pathogen P. digitatum. Based on an in vitro crosstalk assay, we suggested that B. subtilis L1-21 inhibits the pathogen with an inhibition zone of 3.51 ± 0.08 cm. Biocontrol efficacy was highest for the fermented culture filtrate of B. subtilis L1-21. Additionally, using GC-MS analysis, 13 compounds were detected in the extract of this endophyte. The culture filtrate in Landy medium could enlarge and deform pathogen spores and prevent them from developing into normal mycelium. Accordingly, the Landy culture filtrate of B. subtilis L1-21 was stable in the temperature range of 4–90 °C and pH of 3–11. Further, MALDI-TOF-MS for B. subtilis L1-21 detected surfactin, fengycin, bacillaene and bacilysin as potential antifungal compounds. GFP-tagged B. subtilis L1-21 easily colonized in citrus fruit peel and pulp, suggesting its role in eliminating the fungal pathogen. Altogether, it is highly expected that the production of antifungal compounds, and the colonization potential of B. subtilis L1-21 are required against the post-harvest P. digitatum pathogen on citrus fruit.


Microbiology ◽  
2020 ◽  
Vol 166 (11) ◽  
pp. 1007-1018 ◽  
Author(s):  
Delia A. Narváez-Barragán ◽  
Omar E. Tovar-Herrera ◽  
Lorenzo Segovia ◽  
Mario Serrano ◽  
Claudia Martinez-Anaya

Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Bing Deng ◽  
Wenjun Wang ◽  
Changqing Ruan ◽  
Lili Deng ◽  
Shixiang Yao ◽  
...  

Abstract Penicillium digitatum causes serious losses in postharvest citrus fruit. Exogenous salicylic acid (SA) can induce fruit resistance against various pathogens, but the mechanism remains unclear. Herein, a transcriptome-based approach was used to investigate the underlying mechanism of SA-induced citrus fruit resistance against P. digitatum. We found that CsWRKY70 and genes related to methyl salicylate (MeSA) biosynthesis (salicylate carboxymethyltransferase, SAMT) were induced by exogenous SA. Moreover, significant MeSA accumulation was detected in the SA-treated citrus fruit. The potential involvement of CsWRKY70 in regulating CsSAMT expression in citrus fruit was studied. Subcellular localization, dual luciferase, and electrophoretic mobility shift assays and an analysis of transient expression in fruit peel revealed that the nucleus‐localized transcriptional activator CsWRKY70 can activate the CsSAMT promoter by recognizing the W-box element. Taken together, the findings from this study offer new insights into the transcriptional regulatory mechanism of exogenous SA-induced disease resistance in Citrus sinensis fruit.


2019 ◽  
Author(s):  
Adam D. Steinbrenner ◽  
Maria Muñoz-Amatriaín ◽  
Jessica Montserrat Aguilar Venegas ◽  
Sassoum Lo ◽  
Da Shi ◽  
...  

AbstractPlant-herbivore interactions are ubiquitous across nature and drive major agricultural losses. Inducible defense responses triggered through immune recognition aid in host plant protection; however, specific ligand-receptor pairs mediating the initial perception of herbivory remain unknown. Plants in the subtribe Phaseolinae detect herbivore-associated peptides in caterpillar oral secretions and the defined ligands are proteolytic fragments of chloroplastic ATP synthase termed inceptins. Using forward genetic mapping of inceptin-induced responses, we identify a cowpea (Vigna unguiculata) leucine-rich repeat receptor-like protein as an inceptin receptor (INR) sufficient for elicitor-induced responses and enhanced defense against armyworms (Spodoptera exigua). INR defines a receptor by which plants perceive herbivore-associated molecular patterns (HAMPs) and expands the paradigm of surface immune recognition to attack with mandibles.One Sentence SummaryA plant cell surface receptor directly perceives peptides associated with caterpillar herbivory.


2021 ◽  
Vol 22 (8) ◽  
pp. 4214
Author(s):  
Gautam Anand ◽  
Meirav Leibman-Markus ◽  
Dorin Elkabetz ◽  
Maya Bar

Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)–Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-β-xylanases that hydrolyze within the xylan structure, and the β-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst.


LWT ◽  
2021 ◽  
Vol 141 ◽  
pp. 110924
Author(s):  
Ruopeng Yang ◽  
Jinyu Miao ◽  
Yuting Shen ◽  
Nan Cai ◽  
Chunpeng Wan ◽  
...  

2013 ◽  
Vol 103 (10) ◽  
pp. 1028-1034 ◽  
Author(s):  
Carole Lambert ◽  
Ian Li Kim Khiook ◽  
Sylvia Lucas ◽  
Nadège Télef-Micouleau ◽  
Jean-Michel Mérillon ◽  
...  

Wood diseases like Esca are among the most damaging afflictions in grapevine. The defense mechanisms in this plant–pathogen interaction are not well understood. As some grapevine cultivars have been observed to be less susceptible to Esca than others, understanding the factors involved in this potentially stronger defense response can be of great interest. To lift part of this veil, we elicited Vitis vinifera plants of two cultivars less susceptible to Esca (‘Merlot’ and ‘Carignan’) and of one susceptible cultivar (‘Cabernet Sauvignon’), and monitored their defense responses at the leaf level. Our model of elicitation consisted in grapevine cuttings absorbing a culture filtrate of one causal agent of Esca, Phaemoniella chlamydospora. This model might reflect the early events occurring in Esca-affected grapevines. The two least susceptible cultivars showed an earlier and stronger defense response than the susceptible one, particularly with regard to induction of the PAL and STS genes, and a higher accumulation of stilbene compounds and some pathogenesis-related proteins.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiling Fang ◽  
Yangnan Gu

Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes.


Author(s):  
Tianli Li ◽  
Gan Ai ◽  
Xiaowei Fu ◽  
Jin Liu ◽  
Hai Zhu ◽  
...  

The oomycete pathogen Phytophthora capsici encodes hundreds of RXLR effectors to enter plant cells and suppress host defense responses. Only few of them are conserved across different strains and species. Such ‘core effectors’ may target hub immunity pathways that are essential during Phytophthora pathogens interacting with their hosts. However, the underlying mechanisms of core RXLRs-mediated host immunity manipulation are largely unknown. Here, we report the functional characterization of a P. capsici RXLR effector, RXLR242. RXLR242 expression is highly induced during the infection process. Its ectopic expression in Nicotiana benthamiana promotes Phytophthora infection. RXLR242 physically interacts with a group of RAB proteins, which belong to the small GTPase family and function in specifying transport pathways in the intracellular membrane trafficking system. RXLR242 impedes the secretion of PATHOGENESIS-RELATED 1 (PR1) protein to the apoplast by interfering the formation of RABE1-7-labeled vesicles. Further analysis indicated that such phenomenon is resulted from competitive binding of RXLR242 to RABE1-7. RXLR242 also interferes trafficking of the membrane-located receptor FLAGELLIN-SENSING 2 (FLS2) through competitively interacting with RABA4-3. Taken together, our work demonstrates that RXLR242 manipulates plant immunity by targeting RAB proteins and disturbing vesicle-mediated protein transporting pathway in plant hosts.


Sign in / Sign up

Export Citation Format

Share Document