scholarly journals Authentication of Transylvanian Spirits Based on Isotope and Elemental Signatures in Conjunction with Statistical Methods

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3000
Author(s):  
Dana Alina Magdas ◽  
Gabriela Cristea ◽  
Adrian Pîrnau ◽  
Ioana Feher ◽  
Ariana Raluca Hategan ◽  
...  

The potential association between stable isotope ratios of light elements and mineral content, in conjunction with unsupervised and supervised statistical methods, for differentiation of spirits, with respect to some previously defined criteria, is reviewed in this work. Thus, based on linear discriminant analysis (LDA), it was possible to differentiate the geographical origin of distillates in a percentage of 96.2% for the initial validation, and the cross-validation step of the method returned 84.6% of correctly classified samples. An excellent separation was also obtained for the differentiation of spirits producers, 100% in initial classification, and 95.7% in cross-validation, respectively. For the varietal recognition, the best differentiation was achieved for apricot and pear distillates, a 100% discrimination being obtained in both classifications (initial and cross-validation). Good classification percentages were also obtained for plum and apple distillates, where models with 88.2% and 82.4% in initial and cross-validation, respectively, were achieved for plum differentiation. A similar value in the cross-validation procedure was reached for the apple spirits. The lowest classification percent was obtained for quince distillates (76.5% in initial classification followed by 70.4% in cross-validation). Our results have high practical importance, especially for trademark recognition, taking into account that fruit distillates are high-value commodities; therefore, the temptation of “fraud”, i.e., by passing regular distillates as branded ones, could occur.

Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 210 ◽  
Author(s):  
Vesna Vukašinović-Pešić ◽  
Nada Blagojević ◽  
Snežana Brašanac-Vukanović ◽  
Ana Savić ◽  
Vladimir Pešić

This is the first study of mineral content and basic physicochemical parameters of honeys of Montenegro. We examined honey samples from eight different micro-regions of Montenegro, and the results confirm that, with the exception of cadmium in samples from two regions exposed to industrial pollution, none of the 12 elements analyzed exceeded the maximum allowable level. The samples from areas exposed to industrial pollution were clearly distinguished from samples from other regions of Montenegro in the detectable contents of Pb, Cd, and Sr. This study showed that chemometric techniques might enhance the classification of Montenegrin honeys according to their micro-regional origin using the mineral content. Linear discriminant analysis revealed that the classification rate was 79.2% using the cross-validation method.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 591
Author(s):  
Manasavee Lohvithee ◽  
Wenjuan Sun ◽  
Stephane Chretien ◽  
Manuchehr Soleimani

In this paper, a computer-aided training method for hyperparameter selection of limited data X-ray computed tomography (XCT) reconstruction was proposed. The proposed method employed the ant colony optimisation (ACO) approach to assist in hyperparameter selection for the adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm, which is a total-variation (TV) based regularisation algorithm. During the implementation, there was a colony of artificial ants that swarm through the AwPCSD algorithm. Each ant chose a set of hyperparameters required for its iterative CT reconstruction and the correlation coefficient (CC) score was given for reconstructed images compared to the reference image. A colony of ants in one generation left a pheromone through its chosen path representing a choice of hyperparameters. Higher score means stronger pheromones/probabilities to attract more ants in the next generations. At the end of the implementation, the hyperparameter configuration with the highest score was chosen as an optimal set of hyperparameters. In the experimental results section, the reconstruction using hyperparameters from the proposed method was compared with results from three other cases: the conjugate gradient least square (CGLS), the AwPCSD algorithm using the set of arbitrary hyperparameters and the cross-validation method.The experiments showed that the results from the proposed method were superior to those of the CGLS algorithm and the AwPCSD algorithm using the set of arbitrary hyperparameters. Although the results of the ACO algorithm were slightly inferior to those of the cross-validation method as measured by the quantitative metrics, the ACO algorithm was over 10 times faster than cross—Validation. The optimal set of hyperparameters from the proposed method was also robust against an increase of noise in the data and can be applicable to different imaging samples with similar context. The ACO approach in the proposed method was able to identify optimal values of hyperparameters for a dataset and, as a result, produced a good quality reconstructed image from limited number of projection data. The proposed method in this work successfully solves a problem of hyperparameters selection, which is a major challenge in an implementation of TV based reconstruction algorithms.


2021 ◽  
Vol 11 (20) ◽  
pp. 9566
Author(s):  
Tommaso Caloiero ◽  
Gaetano Pellicone ◽  
Giuseppe Modica ◽  
Ilaria Guagliardi

Landscape management requires spatially interpolated data, whose outcomes are strictly related to models and geostatistical parameters adopted. This paper aimed to implement and compare different spatial interpolation algorithms, both geostatistical and deterministic, of rainfall data in New Zealand. The spatial interpolation techniques used to produce finer-scale monthly rainfall maps were inverse distance weighting (IDW), ordinary kriging (OK), kriging with external drift (KED), and ordinary cokriging (COK). Their performance was assessed by the cross-validation and visual examination of the produced maps. The results of the cross-validation clearly evidenced the usefulness of kriging in the spatial interpolation of rainfall data, with geostatistical methods outperforming IDW. Results from the application of different algorithms provided some insights in terms of strengths and weaknesses and the applicability of the deterministic and geostatistical methods to monthly rainfall. Based on the RMSE values, the KED showed the highest values only in April, whereas COK was the most accurate interpolator for the other 11 months. By contrast, considering the MAE, the KED showed the highest values in April, May, June and July, while the highest values have been detected for the COK in the other months. According to these results, COK has been identified as the best method for interpolating rainfall distribution in New Zealand for almost all months. Moreover, the cross-validation highlights how the COK was the interpolator with the best least bias and scatter in the cross-validation test, with the smallest errors.


2021 ◽  
pp. 459-468
Author(s):  
Fatma Güntürkün ◽  
Oguz Akbilgic ◽  
Robert L. Davis ◽  
Gregory T. Armstrong ◽  
Rebecca M. Howell ◽  
...  

PURPOSE Early identification of childhood cancer survivors at high risk for treatment-related cardiomyopathy may improve outcomes by enabling intervention before development of heart failure. We implemented artificial intelligence (AI) methods using the Children's Oncology Group guideline–recommended baseline ECG to predict cardiomyopathy. MATERIAL AND METHODS Seven AI and signal processing methods were applied to 10-second 12-lead ECGs obtained on 1,217 adult survivors of childhood cancer prospectively followed in the St Jude Lifetime Cohort (SJLIFE) study. Clinical and echocardiographic assessment of cardiac function was performed at initial and follow-up SJLIFE visits. Cardiomyopathy was defined as an ejection fraction < 50% or an absolute drop from baseline ≥ 10%. Genetic algorithm was used for feature selection, and extreme gradient boosting was applied to predict cardiomyopathy during the follow-up period. Model performance was evaluated by five-fold stratified cross-validation. RESULTS The median age at baseline SJLIFE evaluation was 31.7 years (range 18.4-66.4), and the time between baseline and follow-up evaluations was 5.2 years (0.5-9.5). Two thirds (67.1%) of patients were exposed to chest radiation, and 76.6% to anthracycline chemotherapy. One hundred seventeen (9.6%) patients developed cardiomyopathy during follow-up. In the model based solely on ECG features, the cross-validation area under the curve (AUC) was 0.87 (95% CI, 0.83 to 0.90), whereas the model based on clinical features had an AUC of 0.69 (95% CI, 0.64 to 0.74). In the model based on ECG and clinical features, the cross-validation AUC was 0.89 (95% CI, 0.86 to 0.91), with a sensitivity of 78% and a specificity of 81%. CONCLUSION AI using ECG data may assist in the identification of childhood cancer survivors at increased risk for developing future cardiomyopathy.


2020 ◽  
Vol 123 (12) ◽  
pp. 1373-1381 ◽  
Author(s):  
Brett S. Nickerson ◽  
Michael V. Fedewa ◽  
Cherilyn N. McLester ◽  
John R. McLester ◽  
Michael R. Esco

AbstractThe purpose of the present study was: (1) to develop a new dual-energy X-ray absorptiometry (DXA)-derived body volume (BV) equation with the GE-Lunar prodigy while utilising underwater weighing (UWW) as a criterion and (2) to cross-validate the novel DXA-derived BV equation (4C-DXANickerson), Wilson DXA-derived BV equation (4C-DXAWilson) and air displacement plethysmography (ADP)-derived BV (4C-ADP) in Hispanic adults. A total of 191 Hispanic adults (18–45 years) participated in the present study. The development sample consisted of 120 females and males (50 % females), whereas the cross-validation sample comprised of forty-one females and thirty males (n 71). Criterion body fat percentage (BF %) and fat-free mass (FFM) were determined using a four-compartment (4C) model with UWW as a criterion for BV (4C-UWW). 4C-DXANickerson, 4C-DXAWilson and 4C-ADP were compared against 4C-UWW in the cross-validation sample. 4C-DXANickerson, 4C-DXAWilson and 4C-ADP all produced similar validity statistics when compared with 4C-UWW in Hispanic males (all P > 0·05). 4C-DXANickerson also yielded similar BF % and FFM values as 4C-UWW when evaluating the mean differences (constant error (CE)) in Hispanic females (CE = –0·79 % and 0·38 kg; P = 0·060 and 0·174, respectively). However, 4C-DXAWilson produced significantly different BF % and FFM values (CE = 3·22 % and –2·20 kg, respectively; both P < 0·001). Additionally, 4C-DXAWilson yielded significant proportional bias when estimating BF % (P < 0·001), whereas 4C-ADP produced significant proportional bias for BF % and FFM (both P < 0·05) when evaluated in Hispanic females. The present study findings demonstrate that 4C-DXANickerson is a valid measure of BV in Hispanics and is recommended for use in clinics, where DXA is the main body composition assessment technique.


1977 ◽  
Vol 19 (81) ◽  
pp. 679-680
Author(s):  
N.F. Drozdovskaya

Abstract The existing methods of predicting avalanche danger often do not meet users’ demands because of the empiric character of the insufficient volume of information used. In such forecasts the contribution of each individual parameter into the prognostic information is unknown, and this is very important when studying such an event as avalanche formation, which is conditioned by a complex interaction of numerous factors, including snow accumulation, the state of snow thickness, and the conditions of its development. It is obvious that such problems can be successfully solved by statistical methods, and that explains the growing interest in numerical methods of avalanche forecasting. Problems of multi-dimensional observations arises in many scientific fields. The method suited for this problem is discriminant analysis, the purpose of which is to divide a multi-dimensional observation vector into predetermined classes. This study considers the prognostic (diagnostic) problems of fresh-snow avalanches released during snowfall or in the two days after it has ceased. The theoretical basis is a complex of statistical methods: correlation and dispersion analysis, “sifting" for the choice of predictors’ informative groups, construction of linear parametric discriminant functions, predictions based on training sample, and verification of discriminant functions based on independent material. The archive used in the study consisted of 500 avalanching cases and 1 300 non-avalanching ones. All situations were grouped according to geomorphological characteristics. Each situation is described by eight meteorological characteristics. The results of classification of snowfall situations into avalanching and non-avalanching ones are as follows: reliability of ρ is from 75% to 91%, H from 0.15 to 0.51; based on independent material the reliability of ρ is from 63% to 85%, H from 0.10 to 0.56. This paper has been accepted in revised form for publication in a later issue of the Journal of Glaciology.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5538
Author(s):  
Yunsheng Zhang ◽  
Yaochen Zhu ◽  
Haifeng Li ◽  
Siyang Chen ◽  
Jian Peng ◽  
...  

Detecting changes between the existing building basemaps and newly acquired high spatial resolution remotely sensed (HRS) images is a time-consuming task. This is mainly because of the data labeling and poor performance of hand-crafted features. In this paper, for efficient feature extraction, we propose a fully convolutional feature extractor that is reconstructed from the deep convolutional neural network (DCNN) and pre-trained on the Pascal VOC dataset. Our proposed method extract pixel-wise features, and choose salient features based on a random forest (RF) algorithm using the existing basemaps. A data cleaning method through cross-validation and label-uncertainty estimation is also proposed to select potential correct labels and use them for training an RF classifier to extract the building from new HRS images. The pixel-wise initial classification results are refined based on a superpixel-based graph cuts algorithm and compared to the existing building basemaps to obtain the change map. Experiments with two simulated and three real datasets confirm the effectiveness of our proposed method and indicate high accuracy and low false alarm rate.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wagner Mateus Costa Melo ◽  
Renzo Garcia Von Pinho ◽  
Marcio Balestre

The present study aimed to predict the performance of maize hybrids and assess whether the total effects of associated markers (TEAM) method can correctly predict hybrids using cross-validation and regional trials. The training was performed in 7 locations of Southern Brazil during the 2010/11 harvest. The regional assays were conducted in 6 different South Brazilian locations during the 2011/12 harvest. In the training trial, 51 lines from different backgrounds were used to create 58 single cross hybrids. Seventy-nine microsatellite markers were used to genotype these 51 lines. In the cross-validation method the predictive accuracy ranged from 0.10 to 0.96, depending on the sample size. Furthermore, the accuracy was 0.30 when the values of hybrids that were not used in the training population (119) were predicted for the regional assays. Regarding selective loss, the TEAM method correctly predicted 50% of the hybrids selected in the regional assays. There was also loss in only 33% of cases; that is, only 33% of the materials predicted to be good in training trial were considered to be bad in regional assays. Our results show that the predictive validation of different crop conditions is possible, and the cross-validation results strikingly represented the field performance.


Sign in / Sign up

Export Citation Format

Share Document