scholarly journals Oat Protein Concentrates with Improved Solubility Produced by an Enzyme-Aided Ultrafiltration Extraction Method

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3050
Author(s):  
Mika Immonen ◽  
Julia Myllyviita ◽  
Tuula Sontag-Strohm ◽  
Päivi Myllärinen

The aim of this study was to develop an extraction method to produce highly functional oat protein concentrates. We investigated the possibility of combining enzyme-aided slightly alkaline (pH 8.0) extraction with ultrafiltration and subsequent diafiltration for concentration of the extracted oat proteins. A further aim was to study how the deamidation of oat proteins with protein-glutaminase (PG) improves the solubility of proteins as a function of the following parameters: pH (6.0–9.0), enzyme dosage (4–20 U/g protein), and incubation time (1–4 h) with response surface methodology (RSM). Furthermore, we investigated selected functional properties, such as heat-induced gelation and solubility, of the oat protein concentrates. The chosen parameters for the enzymatic deamidation pre-treatment process by PG were as follows: pH 8.0, dosage 11.0 U/g protein, and an incubation time of 4 h (1 h at native pH and 3 h at pH 8.0). Two oat protein concentrates were produced, non-deamidated and ultrafiltered, and deamidated and ultrafiltered, with protein concentrations of 45.0 and 52.4%, respectively. The solubility of both oat protein concentrates was significantly improved at neutral and slightly alkaline pH compared to the solubility of proteins extracted from the starting material. Additionally, both oat protein concentrates produced equally strong heat-induced gel-like structures at a protein concentration of 10%.

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Ziba Barati ◽  
Sajid Latif ◽  
Sebastian Romuli ◽  
Joachim Müller

In this study, the effect of enzymatic pre-treatment and the size of cassava tubers on mechanical peeling was examined. Cassava tubers were sorted based on their mass as small, medium and large. Viscozyme® L and an abrasive cassava peeling machine was used for the enzymatic pre-treatment and the mechanical peeling, respectively. Response surface methodology (RSM) was used to investigate the effect of the enzyme dose (0.5–1.9 mL g−1), incubation time (1.5–6 h), peeling time (1.5–4.5 min) and size of the tubers (small, medium and large) on the peeling process. Peeled surface area (PSA) and peel loss (PL) were measured as main responses in RSM. Results showed that the PSA and PL were significantly (p < 0.05) influenced by the enzyme dose, incubation time and peeling time. The size of tubers only had a significant impact on the PSA. The optimum operating conditions for different sizes of tubers were found and validated. Under optimum conditions, the PSA of the large tubers (89.52%) was significantly higher than the PSA of the medium and small tubers (p < 0.05). Application of enzymatic pre-treatment can improve the mechanical peeling process especially for larger cassava tubers.


2019 ◽  
Vol 9 (14) ◽  
pp. 2856 ◽  
Author(s):  
Barati ◽  
Latif ◽  
Romuli ◽  
Müller

The effect of a freeze–thaw pre-treatment (FTP) on the peeling process of cassava tubers was investigated in this study. The length and weight of the cassava tubers varied from 200 to 280 mm and 500 to 900 g, respectively. A prototype abrasive cassava peeling machine was used. The operational parameters were the rotational speed of the brushes (550–1150 rpm), peeling time (1–5 min), thawing temperature (50–90 °C), and incubation time of the thawing treatment (0–120 s). Response surface methodology was applied to optimize FTP to improve the peeling process of cassava tubers. Peeled surface area and peel loss were measured as the responses. Results revealed that the peeled surface area and peel loss were significantly influenced by the rotational speed of the brushes, peeling time, and the incubation time of the thawing treatment (p < 0.05). Under optimal peeling conditions, with a rotational speed of 1000 rpm, a peeling time of 3.4 min, a thawing temperature of 59 °C, and an incubation time of 90 s, the peeled surface and the peel loss were approximately 99.5 and 19%, respectively. The results show that the use of FTP can improve cassava peeling by softening the peels and increasing the peeled surface area.


2018 ◽  
Vol 17 (4) ◽  
pp. 349-354
Author(s):  
Qadir Rahman ◽  
Anwar Farooq ◽  
Amjad Gilani Mazhar ◽  
Nadeem Yaqoob Muhammad ◽  
Ahmad Mukhtar

This study investigates the effect of enzyme formulations (Zympex-014, Kemzyme dry-plus and Natuzyme) on recovery of phenolics from Peganum hermala (harmal) leaves, under optimized conditions using response surface methodology. As compared to the other enzyme complexes, the yield (34 g/100g) obtained through Zympex-014-assisted extraction was higher under optimized conditions such as time (75 min), temperature (70°C), pH (6.5) and enzyme concentration (5 g/100 g) using central composite design (CCD). Effectiveness of Zympex-014 towards hydrolysis of P. hermala leaves cell wall was examined by analyzing the control and enzyme-treated leave residues using scanning electron microscope (SEM). GC/MS characterization authenticated the presence of quercetin (1.44), gallic acid (0.23), caffeic acid (0.04), cinnamic acid (0.05), m-coumaric acid (0.23) and p-coumaric acid (0.37 μg/g) as the potent phenolics in Zympex-014 based extract. It can be concluded from the findings of the current work that pre-treatment of P. hermala leaves with Zympex-014 significantly enhanced the recovery of phenolics that supports its potential uses in the nutra-pharamaceutical industry.


1986 ◽  
Vol 18 (9) ◽  
pp. 163-173
Author(s):  
R. Boll ◽  
R. Kayser

The Braunschweig wastewater land treatment system as the largest in Western Germany serves a population of about 270.000 and has an annual flow of around 22 Mio m3. The whole treatment process consists of three main components : a pre-treatment plant as an activated sludge process, a sprinkler irrigation area of 3.000 ha of farmland and an old sewage farm of 200 ha with surface flooding. This paper briefly summarizes the experiences with management and operation of the system, the treatment results with reference to environmental impact, development of agriculture and some financial aspects.


2018 ◽  
Vol 2018 (4) ◽  
pp. 103-117
Author(s):  
Bipin Pathak ◽  
Ahmed Al-Omari ◽  
Scott Smith ◽  
Nicholas Passarelli ◽  
Ryu Suzuki ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anita Ejiro Nwaefuna ◽  
Karl Rumbold ◽  
Teun Boekhout ◽  
Nerve Zhou

AbstractBioethanol from abundant and inexpensive agricultural and industrial wastes possesses the potential to reduce greenhouse gas emissions. Bioethanol as renewable fuel addresses elevated production costs, as well as food security concerns. Although technical advancements in simultaneous saccharification and fermentation have reduced the cost of production, one major drawback of this technology is that the pre-treatment process creates environmental stressors inhibitory to fermentative yeasts subsequently reducing bioethanol productivity. Robust fermentative yeasts with extreme stress tolerance remain limited. This review presents the potential of dung beetles from pristine and unexplored environments as an attractive source of extremophilic bioethanolic yeasts. Dung beetles survive on a recalcitrant lignocellulose-rich diet suggesting the presence of symbiotic yeasts with a cellulolytic potential. Dung beetles inhabiting extreme stress environments have the potential to harbour yeasts with the ability to withstand inhibitory environmental stresses typically associated with bioethanol production. The review further discusses established methods used to isolate bioethanolic yeasts, from dung beetles.


2021 ◽  
Vol 13 (2) ◽  
pp. 643-655
Author(s):  
A. Thomas ◽  
M. Laxmi ◽  
A. Benny

With decades of studies on cellulose bioconversion, cellulases have been playing an important role in producing fermentable sugars from lignocellulosic biomass. Copious microorganisms that are able to degrade cellulose have been isolated and identified. The present study has been undertaken to isolate and screen the cellulase producing bacteria from soils of agrowaste field. Cellulase production has been qualitatively analyzed in carboxy methylcellulose (CMC) agar medium after congo red staining and NaCl treatment by interpretation with zones around the potent colonies. Out of the seven isolates, only two showed cellulase production. The morphogical and molecular characterization revealed its identity as Escherichia coli and Staphylococcus aureus. The potential of organisms for bioethanol production has been investigated using two substrates, namely, paper and leaves by subjecting with a pre-treatment process using acid hydrolysis to remove lignin which acts as physical barrier to cellulolytic enzymes. Ethanolic fermentation was done using Saccharomyces cerevisiae for 24-48 h and then the bioethanol produced was qualitatively proved by iodoform assay. These finding proves that ethanol can be made from the agricultural waste and the process is recommended as a means of generating wealth from waste.


2019 ◽  
Vol 281 ◽  
pp. 63-70 ◽  
Author(s):  
Tiago Linus Silva Coelho ◽  
Francislene Machado Silva Braga ◽  
Naise Mary Caldas Silva ◽  
Clecio Dantas ◽  
Cícero Alves Lopes Júnior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document