scholarly journals Comparison of Three Extraction Techniques for the Determination of Volatile Flavor Components in Broccoli

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 398
Author(s):  
Martyna Natalia Wieczorek ◽  
Małgorzata Majcher ◽  
Henryk Jeleń

To analyze aroma active components in a food product, the crucial step is to select a suitable extraction technique. It should provide isolation of all components responsible for aroma creation, without the formation of any artifacts during the procedure. Preferably, the extraction method should yield analyzed compounds in detectable levels. The presented study aimed to compare three popular extraction techniques used in flavor studies: solid-phase microextraction (SPME), solvent-assisted flavor evaporation (SAFE), and simultaneous distillation extraction (SDE) in order to isolate aroma components from broccoli (Brassica oleracea L. var. italica). Obtained extracts were analyzed by gas chromatography-olfactmetry (GC-O) to determine compounds with aroma activity as well as gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-ToFMS) to identify them. Thirty-four aroma active compounds were detected in broccoli by the applied techniques. SPME and SAFE together gave the full profile of aroma active components on chromatograms from GC-O, without artifacts that occurred in the SDE extract. SPME was particularly useful in the identification of early eluting compounds, while SAFE enabled isolating compounds with relatively low partition coefficients. Despite all the disadvantages of the SDE method, it leads to the identification of pyrazines, which were important contributors to the overall aroma.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1183 ◽  
Author(s):  
Sang Lee ◽  
Young Hwang ◽  
Moon Kim ◽  
Myung Chung ◽  
Young-Suk Kim

The production of rice-based beverages fermented by lactic acid bacteria (LAB) can increase the consumption of rice in the form of a dairy replacement. This study investigated volatile and nonvolatile components in rice fermented by 12 different LABs. Volatile compounds of fermented rice samples were analyzed using gas chromatography-mass spectrometry (GC-MS) combined with solid-phase microextraction (SPME), while nonvolatile compounds were determined using gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) after derivatization. The 47 identified volatile compounds included acids, aldehydes, esters, furan derivatives, ketones, alcohols, benzene and benzene derivatives, hydrocarbons, and terpenes, while the 37 identified nonvolatile components included amino acids, organic acids, and carbohydrates. The profiles of volatile and nonvolatile components generally differed significantly between obligatorily homofermentative/facultatively heterofermentative LAB and obligatorily heterofermentative LAB. The rice sample fermented by Lactobacillus sakei (RTCL16) was clearly differentiated from the other samples on principal component analysis (PCA) plots. The results of PCA revealed that the rice samples fermented by LABs could be distinguished according to microbial strains.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1055
Author(s):  
Luke Bell ◽  
Eva Kitsopanou ◽  
Omobolanle O. Oloyede ◽  
Stella Lignou

It is widely accepted that the distinctive aroma and flavour traits of Brassicaceae crops are produced by glucosinolate (GSL) hydrolysis products (GHPs) with other non-GSL derived compounds also reported to contribute significantly to their aromas. This study investigated the flavour profile and glucosinolate content of four Brassicaceae species (salad rocket, horseradish, wasabi, and watercress). Solid-phase microextraction followed by gas chromatography-mass spectrometry and gas chromatography-olfactometry were used to determine the volatile compounds and odorants present in the four species. Liquid chromatography-mass spectrometry was used to determine the glucosinolate composition, respectively. A total of 113 compounds and 107 odour-active components were identified in the headspace of the four species. Of the compounds identified, 19 are newly reported for ‘salad’ rocket, 26 for watercress, 30 for wasabi, and 38 for horseradish, marking a significant step forward in understanding and characterising aroma generation in these species. There were several non-glucosinolate derived compounds contributing to the ‘pungent’ aroma profile of the species, indicating that the glucosinolate-derived compounds are not the only source of these sensations in Brassicaceae species. Several discrepancies between observed glucosinolates and hydrolysis products were observed, and we discuss the implications of this for future studies.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 636a-636
Author(s):  
J. Song ◽  
R.M. Beaudry

Aroma analysis of horticultural produce is an emerging field in which both flavor producing and malodorous compounds are detected from within a complex sample matrix. Qualitative and quantitative information is desired to monitor produce ripeness and provide quality control over processed products such as juices, preserves and canned products. Conventional analysis methods such as purge and trap and gas chromatography–mass spectrometry provide much of this information but are laborious and time consuming. Faster techniques are required when large numbers of samples are being analyzed and when rapid feedback to the produce harvester is required. Solid-phase microextraction (SPME) has recently been shown to significantly reduce the sampling times required by more conventional methods. The use of fast gas chromatographic techniques along with the recently commercialized time-of-flight mass spectrometer has also significantly reduced the separation and analysis times. We have combined SPME with gas chromatography–time-of-flight mass spectrometry as a rapid and quantitative tool for the analysis of flavor volatiles in apples and tomatoes. The sampling and analysis processes provide significant improvements to sample throughput, with analysis times taking only 2–6 minutes. The linear response of this system to butylacetate, ethyl-2-methylbutanoate and hexylacetate ranges from ppb to ppm levels, and the identification of unknown flavor compounds is possible even in the presence of other co-eluting compounds. The SPME technique is able to investigate volatiles changes in apple cuticle and tissues, which open the new possibility for flavor biochemistry research.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Adan Li ◽  
Jianzheng Song ◽  
Yang Sun ◽  
Tifeng Jiao

Gas chromatography resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (GC/REMPI-TOFMS) using a nanosecond laser has been applied to analyze the 16 polycyclic aromatic hydrocarbons (PAHs). The excited-state lifetime, absorption characters, and energy of electronic states of the 16 PAHs were investigated to optimize the ionization yield. A river water sample pretreated by means of solid phase extraction was analyzed to evaluate the performance of the analytical instrument. The results suggested that REMPI is superior to electron impact ionization method for soft ionization and suppresses the background signal due to aliphatic hydrocarbons. Thus, GC/REMPI-TOFMS is a more reliable method for the determination of PAHs present in the environment.


Sign in / Sign up

Export Citation Format

Share Document