scholarly journals Hair of the Dog: Identification of a Cis-Regulatory Module Predicted to Influence Canine Coat Composition

Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 323 ◽  
Author(s):  
Whitaker ◽  
Ostrander

Each domestic dog breed is characterized by a strict set of physical and behavioral characteristics by which breed members are judged and rewarded in conformation shows. One defining feature of particular interest is the coat, which is comprised of either a double- or single-layer of hair. The top coat contains coarse guard hairs and a softer undercoat, similar to that observed in wolves and assumed to be the ancestral state. The undercoat is absent in single-coated breeds which is assumed to be the derived state. We leveraged single nucleotide polymorphism (SNP) array and whole genome sequence (WGS) data to perform genome-wide association studies (GWAS), identifying a locus on chromosome (CFA) 28 which is strongly associated with coat number. Using WGS data, we identified a locus of 18.4 kilobases containing 62 significant variants within the intron of a long noncoding ribonucleic acid (lncRNA) upstream of ADRB1. Multiple lines of evidence highlight the locus as a potential cis-regulatory module. Specifically, two variants are found at high frequency in single-coated dogs and are rare in wolves, and both are predicted to affect transcription factor (TF) binding. This report is among the first to exploit WGS data for both GWAS and variant mapping to identify a breed-defining trait.

2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Wim Gorssen ◽  
Roel Meyermans ◽  
Steven Janssens ◽  
Nadine Buys

Abstract Background Runs of homozygosity (ROH) have become the state-of-the-art method for analysis of inbreeding in animal populations. Moreover, ROH are suited to detect signatures of selection via ROH islands and are used in other applications, such as genomic prediction and genome-wide association studies (GWAS). Currently, a vast amount of single nucleotide polymorphism (SNP) data is available online, but most of these data have never been used for ROH analysis. Therefore, we performed a ROH analysis on large medium-density SNP datasets in eight animal species (cat, cattle, dog, goat, horse, pig, sheep and water buffalo; 442 different populations) and make these results publicly available. Results The results include an overview of ROH islands per population and a comparison of the incidence of these ROH islands among populations from the same species, which can assist researchers when studying other (livestock) populations or when looking for similar signatures of selection. We were able to confirm many known ROH islands, for example signatures of selection for the myostatin (MSTN) gene in sheep and horses. However, our results also included multiple other ROH islands, which are common to many populations and not identified to date (e.g. on chromosomes D4 and E2 in cats and on chromosome 6 in sheep). Conclusions We are confident that our repository of ROH islands is a valuable reference for future studies. The discovered ROH island regions represent a unique starting point for new studies or can be used as a reference for future studies. Furthermore, we encourage authors to add their population-specific ROH findings to our repository.


2021 ◽  
pp. 1-11
Author(s):  
Valentina Escott-Price ◽  
Karl Michael Schmidt

<b><i>Background:</i></b> Genome-wide association studies (GWAS) were successful in identifying SNPs showing association with disease, but their individual effect sizes are small and require large sample sizes to achieve statistical significance. Methods of post-GWAS analysis, including gene-based, gene-set and polygenic risk scores, combine the SNP effect sizes in an attempt to boost the power of the analyses. To avoid giving undue weight to SNPs in linkage disequilibrium (LD), the LD needs to be taken into account in these analyses. <b><i>Objectives:</i></b> We review methods that attempt to adjust the effect sizes (β<i>-</i>coefficients) of summary statistics, instead of simple LD pruning. <b><i>Methods:</i></b> We subject LD adjustment approaches to a mathematical analysis, recognising Tikhonov regularisation as a framework for comparison. <b><i>Results:</i></b> Observing the similarity of the processes involved with the more straightforward Tikhonov-regularised ordinary least squares estimate for multivariate regression coefficients, we note that current methods based on a Bayesian model for the effect sizes effectively provide an implicit choice of the regularisation parameter, which is convenient, but at the price of reduced transparency and, especially in smaller LD blocks, a risk of incomplete LD correction. <b><i>Conclusions:</i></b> There is no simple answer to the question which method is best, but where interpretability of the LD adjustment is essential, as in research aiming at identifying the genomic aetiology of disorders, our study suggests that a more direct choice of mild regularisation in the correction of effect sizes may be preferable.


2020 ◽  
Author(s):  
Celine Charon ◽  
Rodrigue Allodji ◽  
Vincent Meyer ◽  
Jean-François Deleuze

Abstract Quality control methods for genome-wide association studies and fine mapping are commonly used for imputation, however, they result in loss of many single nucleotide polymorphisms (SNPs). To investigate the consequences of filtration on imputation, we studied the direct effects on the number of markers, their allele frequencies, imputation quality scores and post-filtration events. We pre-phrased 1,031 genotyped individuals from diverse ethnicities and compared the imputed variants to 1,089 NCBI recorded individuals for additional validation.Without variant pre-filtration based on quality control (QC), we observed no impairment in the imputation of SNPs that failed QC whereas with pre-filtration there was an overall loss of information. Significant differences between frequencies with and without pre-filtration were found only in the range of very rare (5E-04-1E-03) and rare variants (1E-03-5E-03) (p < 1E-04). Increasing the post-filtration imputation quality score from 0.3 to 0.8 reduced the number of single nucleotide variants (SNVs) <0.001 2.5 fold with or without QC pre-filtration and halved the number of very rare variants (5E-04). As a result, to maintain confidence and enough SNVs, we propose here a 2-step post-filtration approach to increase the number of very rare and rare variants compared to conservative post-filtration methods.


Author(s):  
Jack W. O’Sullivan ◽  
John P. A. Ioannidis

AbstractWith the establishment of large biobanks, discovery of single nucleotide polymorphism (SNPs) that are associated with various phenotypes has been accelerated. An open question is whether SNPs identified with genome-wide significance in earlier genome-wide association studies (GWAS) are replicated also in later GWAS conducted in biobanks. To address this question, the authors examined a publicly available GWAS database and identified two, independent GWAS on the same phenotype (an earlier, “discovery” GWAS and a later, replication GWAS done in the UK biobank). The analysis evaluated 136,318,924 SNPs (of which 6,289 had reached p<5e-8 in the discovery GWAS) from 4,397,962 participants across nine phenotypes. The overall replication rate was 85.0% and it was lower for binary than for quantitative phenotypes (58.1% versus 94.8% respectively). There was a18.0% decrease in SNP effect size for binary phenotypes, but a 12.0% increase for quantitative phenotypes. Using the discovery SNP effect size, phenotype trait (binary or quantitative), and discovery p-value, we built and validated a model that predicted SNP replication with area under the Receiver Operator Curve = 0.90. While non-replication may often reflect lack of power rather than genuine false-positive findings, these results provide insights about which discovered associations are likely to be seen again across subsequent GWAS.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2211
Author(s):  
Shan Lin ◽  
Zihui Wan ◽  
Junnan Zhang ◽  
Lingna Xu ◽  
Bo Han ◽  
...  

Albumin can be of particular benefit in fighting infections for newborn calves due to its anti-inflammatory and anti-oxidative stress properties. To identify the candidate genes related to the concentration of albumin in colostrum and serum, we collected the colostrum and blood samples from 572 Chinese Holstein cows within 24 h after calving and measured the concentration of albumin in the colostrum and serum using the ELISA methods. The cows were genotyped with GeneSeek 150 K chips (containing 140,668 single nucleotide polymorphisms; SNPs). After quality control, we performed GWASs via GCTA software with 91,620 SNPs and 563 cows. Consequently, 9 and 7 genome-wide significant SNPs (false discovery rate (FDR) at 1%) were identified. Correspondingly, 42 and 206 functional genes that contained or were approximate to (±1 Mbp) the significant SNPs were acquired. Integrating the biological process of these genes and the reported QTLs for immune and inflammation traits in cattle, 3 and 12 genes were identified as candidates for the concentration of colostrum and serum albumin, respectively; these are RUNX1, CBR1, OTULIN,CDK6, SHARPIN, CYC1, EXOSC4, PARP10, NRBP2, GFUS, PYCR3, EEF1D, GSDMD, PYCR2 and CXCL12. Our findings provide important information for revealing the genetic mechanism behind albumin concentration and for molecular breeding of disease-resistance traits in dairy cattle.


2019 ◽  
Vol 48 (D1) ◽  
pp. D659-D667 ◽  
Author(s):  
Wenqian Yang ◽  
Yanbo Yang ◽  
Cecheng Zhao ◽  
Kun Yang ◽  
Dongyang Wang ◽  
...  

Abstract Animal-ImputeDB (http://gong_lab.hzau.edu.cn/Animal_ImputeDB/) is a public database with genomic reference panels of 13 animal species for online genotype imputation, genetic variant search, and free download. Genotype imputation is a process of estimating missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs) and thus can be widely used in large-scale genome-wide association studies (GWASs) using relatively inexpensive and low-density SNP arrays. However, most animals except humans lack high-quality reference panels, which greatly limits the application of genotype imputation in animals. To overcome this limitation, we developed Animal-ImputeDB, which is dedicated to collecting genotype data and whole-genome resequencing data of nonhuman animals from various studies and databases. A computational pipeline was developed to process different types of raw data to construct reference panels. Finally, 13 high-quality reference panels including ∼400 million SNPs from 2265 samples were constructed. In Animal-ImputeDB, an easy-to-use online tool consisting of two popular imputation tools was designed for the purpose of genotype imputation. Collectively, Animal-ImputeDB serves as an important resource for animal genotype imputation and will greatly facilitate research on animal genomic selection and genetic improvement.


Sign in / Sign up

Export Citation Format

Share Document